887 resultados para Crossing Traffic.
Resumo:
This paper presents a Genetic Algorithms (GA) approach to resolve traffic conflicts at a railway junction. The formulation of the problem for the suitable application of GA will be discussed and three neighborhoods have been proposed for generation evolution. The performance of the GA is evaluated by computer simulation. This study paves the way for more applications of artificial intelligence techniques on a rather conservative industry.
Resumo:
This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.
Resumo:
Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.
Resumo:
An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.
Resumo:
A combined specular reflection and diffusion model using the radiosity technique was developed to calculate road traffic noise level on residential balconies. The model is capable of numerous geometrical configurations for a single balcony situated in the centre of a street canyon. The geometry of the balcony and the street can be altered with width,length and height. The model was used to calculate for three different geometrical and acoustic absorption characteristics for a balcony. The calculated results are presented in this paper.
Resumo:
This paper argues a model of open system design for sustainable architecture, based on a thermodynamics framework of entropy as an evolutionary paradigm. The framework can be simplified to stating that an open system evolves in a non-linear pattern from a far-from-equilibrium state towards a non-equilibrium state of entropy balance, which is a highly ordered organization of the system when order comes out of chaos. This paper is work in progress on a PhD research project which aims to propose building information modelling for optimization and adaptation of buildings environmental performance as an alternative sustainable design program in architecture. It will be used for efficient distribution and consumption of energy and material resource in life-cycle buildings, with the active involvement of the end-users and the physical constraints of the natural environment.
Resumo:
In the study of traffic safety, expected crash frequencies across sites are generally estimated via the negative binomial model, assuming time invariant safety. Since the time invariant safety assumption may be invalid, Hauer (1997) proposed a modified empirical Bayes (EB) method. Despite the modification, no attempts have been made to examine the generalisable form of the marginal distribution resulting from the modified EB framework. Because the hyper-parameters needed to apply the modified EB method are not readily available, an assessment is lacking on how accurately the modified EB method estimates safety in the presence of the time variant safety and regression-to-the-mean (RTM) effects. This study derives the closed form marginal distribution, and reveals that the marginal distribution in the modified EB method is equivalent to the negative multinomial (NM) distribution, which is essentially the same as the likelihood function used in the random effects Poisson model. As a result, this study shows that the gamma posterior distribution from the multivariate Poisson-gamma mixture can be estimated using the NM model or the random effects Poisson model. This study also shows that the estimation errors from the modified EB method are systematically smaller than those from the comparison group method by simultaneously accounting for the RTM and time variant safety effects. Hence, the modified EB method via the NM model is a generalisable method for estimating safety in the presence of the time variant safety and the RTM effects.
Resumo:
Flood-besieged Brisbane residents were forced to watch the monster river consume their homes and livelihoods then see the receding water leave behind a putrid, tar-like sludge. The rains formed by multiple low pressure systems over Central Queensland caused chaos over the Christmas and New Year break for many parts of Queensland.
Resumo:
Overloaded truck traffic is a significant problem on highways around the world. Developing countries in particular, overloaded truck traffic causes large amounts of unexpected expenditure in terms of road maintenance because of premature pavement damage. Overloaded truck traffic is a common phenomenon in developing countries, because of inefficient road management and monitoring systems. According to the available literature, many developing countries are facing the same problem, which is economic loss caused by the existence of overloaded trucks in the traffic stream. This paper summarizes the available literature, news reports, journal articles and traffic research regarding overloaded traffic. It examines the issue of overloading and the strategies and legislation used in developed countries.
Resumo:
This paper discusses major obstacles for the adoption of low cost level crossing warning devices (LCLCWDs) in Australia and reviews those trialed in Australia and internationally. The argument for the use of LCLCWDs is that for a given investment, more passive level crossings can be treated, therefore increasing safety benefits across the rail network. This approach, in theory, reduces risk across the network by utilizing a combination of low-cost and conventional level crossing interventions, similar to what is done in the road environment. This paper concludes that in order to determine if this approach can produce better safety outcomes than the current approach, involving the incremental upgrade of level crossings with conventional interventions, it is necessary to perform rigorous risk assessments and cost-benefit analyses of LCLCWDs. Further research is also needed to determine how best to differentiate less reliable LCCLWDs from conventional warning devices through the use of different warning signs and signals. This paper presents a strategy for progressing research and development of LCLCWDs and details how the Cooperative Research Centre (CRC) for Rail Innovation is fulfilling this strategy through the current and future affordable level crossing projects.
Resumo:
Background: Pregnant women exposed to traffic pollution have an increased risk of negative birth outcomes. We aimed to investigate the size of this risk using a prospective cohort of 970 mothers and newborns in Logan, Queensland. ----- ----- Methods: We examined two measures of traffic: distance to nearest road and number of roads around the home. To examine the effect of distance we used the number of roads around the home in radii from 50 to 500 metres. We examined three road types: freeways, highways and main roads.----- ----- Results: There were no associations with distance to road. A greater number of freeways and main roads around the home were associated with a shorter gestation time. There were no negative impacts on birth weight, birth length or head circumference after adjusting for gestation. The negative effects on gestation were largely due to main roads within 400 metres of the home. For every 10 extra main roads within 400 metres of the home, gestation time was reduced by 1.1% (95% CI: -1.7, -0.5; p-value = 0.001).----- ----- Conclusions: Our results add weight to the association between exposure to traffic and reduced gestation time. This effect may be due to the chemical toxins in traffic pollutants, or because of disturbed sleep due to traffic noise.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations (stop-and-go driving). The negative environmental impacts of these oscillations are widely accepted, but their impact on traffic safety has been debated. This paper describes the impact of freeway traffic oscillations on traffic safety. This study employs a matched case-control design using high-resolution traffic and crash data from a freeway segment. Traffic conditions prior to each crash were taken as cases, while traffic conditions during the same periods on days without crashes were taken as controls. These were also matched by presence of congestion, geometry and weather. A total of 82 cases and about 80,000 candidate controls were extracted from more than three years of data from 2004 to 2007. Conditional logistic regression models were developed based on the case-control samples. To verify consistency in the results, 20 different sets of controls were randomly extracted from the candidate pool for varying control-case ratios. The results reveal that the standard deviation of speed (thus, oscillations) is a significant variable, with an average odds ratio of about 1.08. This implies that the likelihood of a (rear-end) crash increases by about 8% with an additional unit increase in the standard deviation of speed. The average traffic states prior to crashes were less significant than the speed variations in congestion.
Resumo:
This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important features related to bottleneck activations and traffic oscillations in congested traffic in a systematic manner. In particular, the analysis of loop detector data from a freeway shows that the use of wavelet-based energy can effectively identify the location of an active bottleneck, the arrival time of the resulting queue at each upstream sensor location, and the start and end of a transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our analysis shows that the wavelet-based energies of individual vehicles can effectively detect the origins of deceleration waves and shed light on possible triggers (e.g., lane-changing). The spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity.