754 resultados para Criteria for Decision-Making under Risk and Uncertainty
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e., the autonomous vehicles' ability to make appropriate driving decisions in city road traffic situations. The paper explains the overall controls system architecture, the decision making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is used in the process of selecting the most appropriate driving maneuver from the set of feasible ones. Experimental tests show that MCDM is suitable for this new application area.
Resumo:
Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.
Resumo:
In the quest for a descriptive theory of decision-making, the rational actor model in economics imposes rather unrealistic expectations and abilities on human decision makers. The further we move from idealized scenarios, such as perfectly competitive markets, and ambitiously extend the reach of the theory to describe everyday decision making situations, the less sense these assumptions make. Behavioural economics has instead proposed models based on assumptions that are more psychologically realistic, with the aim of gaining more precision and descriptive power. Increased psychological realism, however, comes at the cost of a greater number of parameters and model complexity. Now there are a plethora of models, based on different assumptions, applicable in differing contextual settings, and selecting the right model to use tends to be an ad-hoc process. In this thesis, we develop optimal experimental design methods and evaluate different behavioral theories against evidence from lab and field experiments.
We look at evidence from controlled laboratory experiments. Subjects are presented with choices between monetary gambles or lotteries. Different decision-making theories evaluate the choices differently and would make distinct predictions about the subjects' choices. Theories whose predictions are inconsistent with the actual choices can be systematically eliminated. Behavioural theories can have multiple parameters requiring complex experimental designs with a very large number of possible choice tests. This imposes computational and economic constraints on using classical experimental design methods. We develop a methodology of adaptive tests: Bayesian Rapid Optimal Adaptive Designs (BROAD) that sequentially chooses the "most informative" test at each stage, and based on the response updates its posterior beliefs over the theories, which informs the next most informative test to run. BROAD utilizes the Equivalent Class Edge Cutting (EC2) criteria to select tests. We prove that the EC2 criteria is adaptively submodular, which allows us to prove theoretical guarantees against the Bayes-optimal testing sequence even in the presence of noisy responses. In simulated ground-truth experiments, we find that the EC2 criteria recovers the true hypotheses with significantly fewer tests than more widely used criteria such as Information Gain and Generalized Binary Search. We show, theoretically as well as experimentally, that surprisingly these popular criteria can perform poorly in the presence of noise, or subject errors. Furthermore, we use the adaptive submodular property of EC2 to implement an accelerated greedy version of BROAD which leads to orders of magnitude speedup over other methods.
We use BROAD to perform two experiments. First, we compare the main classes of theories for decision-making under risk, namely: expected value, prospect theory, constant relative risk aversion (CRRA) and moments models. Subjects are given an initial endowment, and sequentially presented choices between two lotteries, with the possibility of losses. The lotteries are selected using BROAD, and 57 subjects from Caltech and UCLA are incentivized by randomly realizing one of the lotteries chosen. Aggregate posterior probabilities over the theories show limited evidence in favour of CRRA and moments' models. Classifying the subjects into types showed that most subjects are described by prospect theory, followed by expected value. Adaptive experimental design raises the possibility that subjects could engage in strategic manipulation, i.e. subjects could mask their true preferences and choose differently in order to obtain more favourable tests in later rounds thereby increasing their payoffs. We pay close attention to this problem; strategic manipulation is ruled out since it is infeasible in practice, and also since we do not find any signatures of it in our data.
In the second experiment, we compare the main theories of time preference: exponential discounting, hyperbolic discounting, "present bias" models: quasi-hyperbolic (α, β) discounting and fixed cost discounting, and generalized-hyperbolic discounting. 40 subjects from UCLA were given choices between 2 options: a smaller but more immediate payoff versus a larger but later payoff. We found very limited evidence for present bias models and hyperbolic discounting, and most subjects were classified as generalized hyperbolic discounting types, followed by exponential discounting.
In these models the passage of time is linear. We instead consider a psychological model where the perception of time is subjective. We prove that when the biological (subjective) time is positively dependent, it gives rise to hyperbolic discounting and temporal choice inconsistency.
We also test the predictions of behavioral theories in the "wild". We pay attention to prospect theory, which emerged as the dominant theory in our lab experiments of risky choice. Loss aversion and reference dependence predicts that consumers will behave in a uniquely distinct way than the standard rational model predicts. Specifically, loss aversion predicts that when an item is being offered at a discount, the demand for it will be greater than that explained by its price elasticity. Even more importantly, when the item is no longer discounted, demand for its close substitute would increase excessively. We tested this prediction using a discrete choice model with loss-averse utility function on data from a large eCommerce retailer. Not only did we identify loss aversion, but we also found that the effect decreased with consumers' experience. We outline the policy implications that consumer loss aversion entails, and strategies for competitive pricing.
In future work, BROAD can be widely applicable for testing different behavioural models, e.g. in social preference and game theory, and in different contextual settings. Additional measurements beyond choice data, including biological measurements such as skin conductance, can be used to more rapidly eliminate hypothesis and speed up model comparison. Discrete choice models also provide a framework for testing behavioural models with field data, and encourage combined lab-field experiments.
Resumo:
Studies of human decision making emerge from two dominant traditions: learning theorists [1-3] study choices in which options are evaluated on the basis of experience, whereas behavioral economists and financial decision theorists study choices in which the key decision variables are explicitly stated. Growing behavioral evidence suggests that valuation based on these different classes of information involves separable mechanisms [4-8], but the relevant neuronal substrates are unknown. This is important for understanding the all-too-common situation in which choices must be made between alternatives that involve one or another kind of information. We studied behavior and brain activity while subjects made decisions between risky financial options, in which the associated utilities were either learned or explicitly described. We show a characteristic effect in subjects' behavior when comparing information acquired from experience with that acquired from description, suggesting that these kinds of information are treated differently. This behavioral effect was reflected neurally, and we show differential sensitivity to learned and described value and risk in brain regions commonly associated with reward processing. Our data indicate that, during decision making under risk, both behavior and the neural encoding of key decision variables are strongly influenced by the manner in which value information is presented.
Resumo:
Rapid tryptophan (Trp) depletion (RTD) has been reported to cause deterioration in the quality of decision making and impaired reversal learning, while leaving attentional set shifting relatively unimpaired. These findings have been attributed to a more powerful neuromodulatory effect of reduced 5-HT on ventral prefrontal cortex (PFC) than on dorsolateral PFC. In view of the limited number of reports, the aim of this study was to independently replicate these findings using the same test paradigms. Healthy human subjects without a personal or family history of affective disorder were assessed using a computerized decision making/gambling task and the CANTAB ID/ED attentional set-shifting task under Trp-depleted (n=17; nine males and eight females) or control (n=15; seven males and eight females) conditions, in a double-blind, randomized, parallel-group design. There was no significant effect of RTD on set shifting, reversal learning, risk taking, impulsivity, or subjective mood. However, RTD significantly altered decision making such that depleted subjects chose the more likely of two possible outcomes significantly more often than controls. This is in direct contrast to the previous report that subjects chose the more likely outcome significantly less often following RTD. In the terminology of that report, our result may be interpreted as improvement in the quality of decision making following RTD. This contrast between studies highlights the variability in the cognitive effects of RTD between apparently similar groups of healthy subjects, and suggests the need for future RTD studies to control for a range of personality, family history, and genetic factors that may be associated with 5-HT function.
Resumo:
In the context of decision making under uncertainty, we formalize the concept of analogy: an analogy between two decision problems is a mapping that transforms one problem into the other while preserving the problem's structure. We identify the basic structure of a decision problem, and provide a representation of the mappings that pre- serve this structure. We then consider decision makers who use multiple analogies. Our main results are a representation theorem for "aggregators" of analogies satisfying certain minimal requirements, and the identification of preferences emerging from analogical reasoning. We show that a large variety of multiple-prior preferences can be thought of as emerging from analogical reasoning.
Resumo:
Effective strategies for recruiting volunteers who are prepared to make a long-term commitment to formal positions are essential for the survival of voluntary sport clubs. This article examines the decision-making processes in relation to these efforts. Under the assumption of bounded rationality, the garbage can model is used to grasp these decision-making processes theoretically and access them empirically. Based on case study framework an in-depth analysis of recruitment practices was conducted in nine selected sport clubs. Results showed that the decision-making processes are generally characterized by a reactive approach in which dominant actors try to handle personnel problems of recruitment in the administration and sport domains through routine formal committee work and informal networks. In addition, it proved possible to develop a typology that deliver an overview of different decision-making practices in terms of the specific interplay of the relevant components of process control (top-down vs. bottom-up) and problem processing (situational vs. systematic).
Resumo:
The interplay between two perspectives that have recently been applied in the attitude area-the social identity approach to attitude-behaviour relations (Terry & Hogg, 1996) and the MODE model (Fazio, 1990a)-was examined in the present research. Two experimental studies were conducted to examine the role of group norms, group identification, attitude accessibility, and mode of behavioural decision-making in the attitude-behaviour relationship. In Study I (N = 211), the effects of norms and identification on attitude-behaviour consistency as a function of attitude accessibility and mood were investigated. Study 2 (N = 354) replicated and extended the first experiment by using time pressure to manipulate mode of behavioural decision-making. As expected, the effects of norm congruency varied as a function of identification and mode of behavioural decision-making. Under conditions assumed to promote deliberative processing (neutral mood/low time pressure), high identifiers behaved in a manner consistent with the norm. No effects emerged under positive mood and high time pressure conditions. In Study 2, there was evidence that exposure to an attitude-incongruent norm resulted in attitude change only under low accessibility conditions. The results of these studies highlight the powerful role of group norms in directing individual behaviour and suggest limited support for the MODE model in this context. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
This research was conducted at the Space Research and Technology Centre o the European Space Agency at Noordvijk in the Netherlands. ESA is an international organisation that brings together a range of scientists, engineers and managers from 14 European member states. The motivation for the work was to enable decision-makers, in a culturally and technologically diverse organisation, to share information for the purpose of making decisions that are well informed about the risk-related aspects of the situations they seek to address. The research examined the use of decision support system DSS) technology to facilitate decision-making of this type. This involved identifying the technology available and its application to risk management. Decision-making is a complex activity that does not lend itself to exact measurement or precise understanding at a detailed level. In view of this, a prototype DSS was developed through which to understand the practical issues to be accommodated and to evaluate alternative approaches to supporting decision-making of this type. The problem of measuring the effect upon the quality of decisions has been approached through expert evaluation of the software developed. The practical orientation of this work was informed by a review of the relevant literature in decision-making, risk management, decision support and information technology. Communication and information technology unite the major the,es of this work. This allows correlation of the interests of the research with European public policy. The principles of communication were also considered in the topic of information visualisation - this emerging technology exploits flexible modes of human computer interaction (HCI) to improve the cognition of complex data. Risk management is itself an area characterised by complexity and risk visualisation is advocated for application in this field of endeavour. The thesis provides recommendations for future work in the fields of decision=making, DSS technology and risk management.
Resumo:
Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and speci?cally in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, speci?cally Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential bene?ts of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision.
Resumo:
Strategy is highly important for organisational success and the achievement of competitive advantage. Strategy is dynamic and it depends on accurate individual decision-making from medium and high-level managers and executives. Since managers always formulate strategy, its formulation depends mostly on their assertive decisions. Making good decisions is a complex task, even more in today’s business world where a large quantity of information and a dynamic environment forces people to decide without having complete information. As Shafir, Simonson, & Tversky (1993) point out, "the making of decisions, both big and small, is often difficult because of uncertainty and conflict". In this paper the author will explain a basic theoretical framework about top manager's individual decision-making, showing how complex the process of making high-impact decisions is; then, he will compare this theory with one of the most important streams in strategic management, the Resource-Based View (RBV) of the firm. Finally, within the context of individual decision-making and the RBV stream, the author will show how individual decision makers in top management positions constitute a valuable, rare, non-imitable and non-substitutable resource that provides sustained competitive advantage.
Resumo:
The Flinders Decision-Making Questionnaire (FDMQ) (Mann, 1982), which measures three decision-making styles and decision-making self-esteem, and the Self-Description Questionnaire III (SDQ HI) (Marsh & O'Neill, 1984), which measures 13 facets of self-concept; were administered to 475 university students to investigate some of the tenets of Janis and Mann's (1976, 1977) conflict model of decision-making and to further investigate the influence of self-concept on decision-making behaviours. The findings empirically validated Janis and Mann's (1977) link between decision-making self-esteem and decision-making style. Modest relationships, in the predicted direction, were found between decision-making self-esteem and the three decision-making styles (Vigilance, Defensive Avoidance, and Hypervigilance). In addition, specific facets of self-concept (General, Verbal, Academic, Honesty/Reliability and Problem-Solving Self Concepts) were related to self-reported decision-making behaviours.
Resumo:
This study aimed to determine whether two brief, low cost interventions would reduce young drivers’ optimism bias for their driving skills and accident risk perceptions. This tendency for such drivers to perceive themselves as more skilful and less prone to driving accidents than their peers may lead to less engagement in precautionary driving behaviours and a greater engagement in more dangerous driving behaviour. 243 young drivers (aged 17 - 25 years) were randomly allocated to one of three groups: accountability, insight or control. All participants provided both overall and specific situation ratings of their driving skills and accident risk relative to a typical young driver. Prior to completing the questionnaire, those in the accountability condition were first advised that their driving skills and accident risk would be later assessed via a driving simulator. Those in the insight condition first underwent a difficult computer-based hazard perception task designed to provide participants with insight into their potential limitations when responding to hazards in difficult and unpredictable driving situations. Participants in the control condition completed only the questionnaire. Results showed that the accountability manipulation was effective in reducing optimism bias in terms of participants’ comparative ratings of their accident risk in specific situations, though only for less experienced drivers. In contrast, among more experienced males, participants in the insight condition showed greater optimism bias for overall accident risk than their counterparts in the accountability or control groups. There were no effects of the manipulations on drivers’ skills ratings. The differential effects of the two types of manipulations on optimism bias relating to one’s accident risk in different subgroups of the young driver sample highlight the importance of targeting interventions for different levels of experience. Accountability interventions may be beneficial for less experienced young drivers but the results suggest exercising caution with the use of insight type interventions, particularly hazard perception style tasks, for more experienced young drivers typically still in the provisional stage of graduated licensing systems.
Resumo:
Background: Enabling women to make informed decisions is a crucial component of consumer-focused maternity care. Current evidence suggests that health care practitioners’ communication of care options may not facilitate patient involvement in decision-making. The aim of this study was to investigate the effect of specific variations in health caregiver communication on women’s preferences for induction of labor for prolonged pregnancy. Methods: A convenience sample of 595 female participants read a hypothetical scenario in which an obstetrician discusses induction of labor with a pregnant woman. Information provided on induction and the degree of encouragement for the woman’s involvement in decision-making was manipulated to create four experimental conditions. Participants indicated preference with respect to induction, their perceptions of the quality of information received, and other potential moderating factors. Results: Participants who received information that was directive in favor of medical intervention were significantly more likely to prefer induction than those given nondirective information. No effect of level of involvement in decision-making was found. Participants’ general trust in doctors moderated the relationship between health caregiver communication and preferences for induction, such that the influence of information provided on preferences for induction differed across levels of involvement in decision-making for women with a low trust in doctors, but not for those with high trust. Many women were not aware of the level of information required to make an informed decision. Conclusions: Our findings highlight the potential value of strategies such as patient decision aids and health care professional education to improve the quality of information available to women and their capacity for informed decision-making during pregnancy and birth. (BIRTH 39:3 September 2012)
Resumo:
This article summarizes research from an ecological dynamics program of work on team sports exemplifying how small-sided and conditioned games (SSCG) can enhance skill acquisition and decision-making processes during training. The data highlighted show how constraints of different SSCG can facilitate emergence of continuous interpersonal coordination tendencies during practice to benefit team game players.