694 resultados para Craniocervical Flexion
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJETIVO: Avaliar o efeito da estimulação tátil-cinestésica na evolução do padrão comportamental e clínico de recém-nascidos pré-termos (RNPT) durante o período de internação hospitalar. MÉTODOS: Trinta e dois RNPT, com peso ao nascimento inferior a 2.500 gramas, clinicamente estáveis e destituídos de asfixia perinatal importante foram divididos em 16 bebês do grupo controle (GC) e 16 do experimental (GE). Foram coletados dados da evolução clínica a partir dos registros hospitalares e da avaliação comportamental por meio de filmagens semanais de oito minutos, desde a inclusão do RNPT na amostra até a alta hospitalar. RESULTADOS: Tendência a redução do tempo de internação hospitalar, aumento do ganho de peso diário e predominância de comportamentos auto-organizados (respiração regular, estado de alerta, tônus equilibrado, posturas mistas, movimentação coordenada, movimentos de mão na face, sucção, preensão, apoio) para os RNPT do GE. A análise comparativa das idades pós-conceptuais divididas em intervalos (I - 31 a 33 semanas 6/7; II - 34 a 36 semanas 6/7; e III - 37 a 39 semanas 6/7) ressaltou, no aspecto motor, um tônus equilibrado e movimentação voluntária coordenada para os três períodos, maior permanência em posturas mistas (intervalo I) ou em flexão (intervalo II) e a obtenção de respiração mais regular na faixa etária I do GE. CONCLUSÃO: Destaque da estimulação tátil-cinestésica como método de intervenção durante o período de internação hospitalar, contribuindo para a auto-organização e regulação comportamental de RNPT. Artigo registrado no Australian New Zealand Clinical Trials Registry (ANZCTR) sob o número ACTRN12610000133033.
Resumo:
Background: Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed. Methods: Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion ROM) were compared between the two groups walking at similar speeds. Results: The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05). Conclusions: The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.
Resumo:
Purpose: To evaluate patellar kinematics of volunteers Without knee pain at rest and during isometric contraction in open- and closed-kinetic-chain exercises. Methods: Twenty individuals took part in this study. All were submitted to magnetic resonance imaging (MRI) during rest and voluntary isometric contraction (VIC) in the open anti closed kinetic chain at 15 degrees, 30 degrees, and 45 degrees of knee flexion. Through MRI and using medical e-film software, the following measurements were evaluated: sulcus angle, patellar-tilt angle, and bisect offset. The mixed-effects linear model was used for comparison between knee positions, between rest and isometric contractions, and between (he exercises. Results: Data analysis revealed that the sulcus angle decreased as knee flexion increased and revealed increases with isometric contractions in both the open and closed kinetic chain for all knee-flexion angles. The patellar-tilt angle decreased with isometric contractions in both the open and closed kinetic chain for every knee position. However, in the closed kinetic chain, patellar tilt increased significantly with the knee flexed at 15 degrees. The bisect offset increased with the knee flexed at 15 degrees during isometric contractions and decreased as knee flexion increased during both exercises. Conclusion: VIC in the last degrees of knee extension may compromise patellar dynamics. On the other hand, it is possible to favor patellar stability by performing muscle contractions with the knee flexed at 30 degrees and 45 degrees in either the open or closed kinetic chain.
Resumo:
The aim of this study is to analyze the effect of neuromuscular electrical stimulation (NMES) on myoelectrical activity and on joint torque during isometric plantar flexion contraction. Ten healthy young adult subjects participate in this study. The electrodes for NMES are placed along posterior thigh along ciatic nerve trajectory. It is measured the myoelectrical activity and the isometric torque generated by ankle plantar flexion with an isokinetic dynamometer. The conditions of isometric contractions are maximum isometric voluntary contraction (MIVC), NMES, and association of both (MIVC+NMES). The results show lower torque during NMES and larger SOL activity compare to the others. Besides, in order to keep the same objective task (to produce the same level of torque), neuromuscular adaptations are necessary on the common drive.
Resumo:
The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p < .05). The children with CP presented the highest EMG and level of co-activation (p < .05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this study, we examined Spatial-temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70 +/- 6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29 +/- 16 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride`s initial contact in water than on land. Concerning the comparison between elderly individuals and adults, elderly individuals walked significantly slower on land than adults but both groups presented the same speed walking in water. In water, elderly individuals presented significantly shorter stride length, lower stride duration, and higher stance period duration than younger adults. That is, elderly individuals` adaptations to walking in water differ from those in the younger age group. This fact should be considered when prescribing rehabilitation or fitness programs for these populations. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function. (C) 2006 Elsevier Ltd. All rights reserved.