917 resultados para Covalent immobilization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel procedure is presented describing the induction of antigen-specific cytolytic T lymphocytes (CTL) in vivo, that uses as immunogen syngeneic Concanavalin A stimulated spleen cells expressing H-2Kd (Kd) molecules photocrosslinked with a photoreactive peptide derivative. The Kd restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was conjugated with photoreactive iodo-4-azidosalicylic acid (IASA) at the NH2-terminus and with 4-azidobenzoic acid (ABA) at the TCR contact residue Lys259 to make IASA-YIPSAEK(ABA)I. Selective photoactivation of the IASA group allowed specific photoaffinity labeling of cell-associated Kd molecules. Optimal peptide derivative binding to Kd molecules of concanavalin A stimulated spleen cells was obtained upon 4-6 h incubation at 26 degrees C in the presence of human beta 2 microglobulin. Photocrosslinking prevented the rapid dissociation of cell-associated Kd-peptide derivative complexes at 37 degrees C. The photoaffinity labeled cells were injected i.p. into syngeneic recipients. After 10 days, the peritoneal exudate lymphocytes were harvested and in vitro stimulated with peptide derivative pulsed P815 mastocytoma cells. The resulting bulk cultures displayed high cytolytic activity that was specific for IASA-YIPSAEK(ABA)I and YIPSAEK(ABA)I. In contrast, peritoneal exudate lymphocytes from mice inoculated with concanavalin A blasts that were pulsed, but not photocrosslinked, with IASA-YIPSAEK(ABA)I expressed only marginal levels of IASA-YIPSAEK(ABA)I-specific cytolytic activity. This immunization strategy, using neither adjuvants nor potentially hazardous transfected/transformed cells, is safe and should be universally applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of the T cell antigen receptor with a photoreactive antigenic peptide derivative bound covalently to the H-2Kd (Kd) molecule was studied by photoaffinity labeling on cloned, CD8 positive cytotoxic T lymphocytes. The Kd-restricted Plasmodium berghei circumsporozoite peptide 253-260 (YIPS-AEKI) was conjugated with iodo-4-azidosalicylic acid at the N terminus and with 4-azidobenzoic acid at the T cell receptor residue Lys-259. Cell-associated or soluble Kd molecules were photoaffinity-labeled with the peptide derivative by selective photoactivation of the N-terminal photoreactive group. Incubation of cell-associated or soluble covalent Kd-peptide derivative complexes (ligands) with cytotoxic T lymphocytes that recognized this peptide derivative and activation of the orthogonal photoreactive group resulted in specific photoaffinity labeling of the T cell receptor. The labeling was inhibitable by an anti-Kd antibody and was absent on Kd-restricted cytotoxic T lymphocytes of different specificity. The binding of the soluble ligand reached a maximum after 2-4 min at 37 degrees C, after 30 min at 18 degrees C, and after 3 h at 4 degrees C. In contrast, binding of the cell-associated ligand reached a transient maxima after 50 and 110 min at 37 and 18 degrees C, respectively. The degree of binding at 37 degrees C was approximately 30% lower than that at 18 degrees C. No binding took place at 4 degrees C. Inhibition studies with antibodies and drugs indicated that the binding of the cell-associated, but not the soluble ligand, was highly dependent on T cell-target cell conjugate formation, whereas the binding of the soluble ligand was greatly dependent on CD8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid mine drainage (AMD) is an environmental concern due to the risk of element mobilization, including toxic elements, and inclusion in the food chain. In this study, three cover layers were tested to minimize As, Fe and S mobilization from a substrate from former gold mining, containing pyrite and arsenopyrite. For this purpose, different layers (capillary break, sealant and cover layer) above the substrate and the induction of a geochemical barrier (GB) were used to provide suitable conditions for adsorption and co-precipitation of the mobilized As. Thirteen treatments were established to evaluate the leaching of As, Fe and S from a substrate in lysimeters. The pH, As, Fe, S, Na, and K concentrations and total volume of the leachates were determined. Mineralogical analyses were realized in the substrate at the end of the experimental period. Lowest amounts of As, Fe and S (average values of 5.47, 48.59 and 132.89 g/lysimeter) were leached in the treatments that received Na and K to induce GB formation. Mineralogical analyses indicated jarosite formation in the control treatment and in treatments that received Na and K salts. However, the jarosite amounts in these treatments were higher than in the control, suggesting that these salts accelerated the GB formation. High amounts of As, Fe and S (average values of 11.7, 103.94 and 201.13 g/lysimeter) were observed in the leachate from treatments without capillary break layer. The formation of geochemical barrier and the use of different layers over the sulfide substrate proved to be efficient techniques to decrease As, Fe and S mobilization and mitigate the impact of acid mine drainage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein C3 of the complement system is known for its role in the nonspecific immune response. Covalent binding of C3b to antigen upon complement activation also plays a significant role in specific T cell immune response. C3b-antigen complexes can bind to complement receptors on the antigen-presenting cell, and the C3b antigen link (most often an ester link) remains fairly stable inside the cells. In this study, IgG1,kappa and IgG2a,kappa murine monoclonal antibodies (mAb) were used as antigens; covalent complexes between mAb and C3b were produced and purified in vitro from purified proteins; human B cell lines and T cell clones were raised from tumor patients who received mAb injections for cancer therapy or diagnosis. Recognition of epitopes of these mAb by T cell clones when the mAb were processed alone or bound to C3b was compared. IgG or IgG-C3b complexes presented by B cell lines were able to stimulate proliferation of kappa light chain-specific T cell clones at similar concentrations. In contrast, IgG-C3b complex recognition by heavy chain-specific T cell clones required 100-fold less IgG-C3b than uncomplexed IgG. As C3b was shown to be covalently bound only to the IgG heavy chains in the complexes, C3b chaperoning is restricted to only the IgG heavy chain and selectively influences intracellular steps of IgG heavy chain processing. This differential modulation of C3b suggests an early dissociation of IgG heavy and light chains in antigen-presenting cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the chemical bond in three titanium oxides of different crystal structure and different formal oxidation state has been studied by means of the ab initio cluster-model approach. The covalent and ionic contributions to the bond have been measured from different theoretical techniques. All the analysis is consistent with an increasing of covalence in the TiO, Ti2O3, and TiO2 series as expected from chemical intuition. Moreover, the use of the ab initio cluster-model approach combined with different theoretical techniques has permitted us to quantify the degree of ionic character, showing that while TiO can approximately be described as an ionic compound, TiO2 is better viewed as a rather covalent oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute ankle sprain is the most frequent orthopaedic injury. Up to 4% of patients admitted to the emergency room will present with an acute ankle sprain. The lateral ligaments are involved at various degrees (anterior talo-fibular and calcaneo-fibular ligaments). Grade I acute ankle sprains are well treated with a compression bandage or an Aircast brace. Grade II and III acute ankle sprains are best treated with a below-knee cast. The Aircast brace is the next best treatment for such lesions (grades II and III) and will provide satisfactory support, but has been shown to be not as effective as the below-knee cast in terms of short to mid-term patients outcome (pain and function).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical functionalization of cell-surface proteins of human primary fetal bone cells with hydrophilic bioorthogonal intermediates was investigated. Toward this goal, chemical pathways were developed for click reaction-mediated coupling of alkyne derivatives with cellular azido-expressing proteins. The incorporation via a tetraethylene glycol linker of a dipeptide and a reporter biotin allowed the proof of concept for the introduction of cell-specific peptide ligands and to follow the reaction in living cells. Tuning the conditions of the click reaction resulted in chemical functionalization of living human fetal osteoblasts with excellent cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolyl oligopeptidases cleave peptides on the carboxy side of internal proline residues and their inhibition has potential in the treatment of human brain disorders. Using our docking program fitted, we have designed a series of constrained covalent inhibitors, built from a series of bicyclic scaffolds, to study the optimal shape required for these small molecules. These structures bear nitrile functional groups that we predicted to covalently bind to the catalytic serine of the enzyme. Synthesis and biological assays using human brain-derived astrocytic cells and endothelial cells and human fibroblasts revealed that these compounds act as selective inhibitors of prolyl oligopeptidase activity compared to prolyl-dipeptidyl-aminopeptidase activity, are able to penetrate the cells and inhibit intracellular activities in intact living cells. This integrated computational and experimental study shed light on the binding mode of inhibitors in the enzyme active site and will guide the design of future drug-like molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. Results: To reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite (R) 545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI. 3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I. 3, requiring a refolding step, was poorly immobilized on all supports tested ( best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000. Conclusions: The suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes.