943 resultados para Counting circuits.
Resumo:
209 p. : graf.
Resumo:
This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.
Resumo:
C. elegans is a compact system of 302 neurons with identifiable and mapped connections that makes it ideal for systems analysis. This work is a demonstration of what I have been able to learn about the nature of state-specific modulation and reversibility during a state called lethargus, a sleep-like state in the worm. I begin with description about the nervous system of the worm, the nature of sleep in the worm, the questions about behavior and its apparent circuit properties, the tools available and used to manipulate the nervous system, and what I have been able to learn from these studies. I end with clues that the physiology helps to teach us about the dynamics of state specific modulation, what makes sleep so different from other states, and how we can use these measurements to understand which modulators, neurotransmitters, and channels can be used to create different dynamics in a simple model system.