114 resultados para Corymbia
Resumo:
Large fruited spotted gum eucalypt Corymbia henryi occurs sympatrically with small fruited spotted gum Corymbia citriodora subspecies variegata over a large portion of its range on the east coast of Australia. The two taxa are interfertile, have overlapping flowering times and share a common set of insect and vertebrate pollinators. Previous genetic analysis of both taxa from two geographically remote sites suggested that the two were morphotypes rather than genetically distinct species. In this study we further explore this hypothesis of genic species by expanding sampling broadly through their sympatric locations and examine local-scale spatial genetic structure in stands that differ in species and age composition. Delineation of populations at five microsatellite loci, using an individual-based approach and Bayesian modelling, as well as clustering of individuals based on allele frequencies showed the two species to be molecularly homogeneous. Genetic structure aligned largely with geographic areas of origin, and followed an isolation-by-distance model, where proximal populations were generally less differentiated than more distant ones. At the stand level, spotted gums also generally showed little structure consistent with the high levels of gene flow inferred across the species range. Disturbances in the uniformity of structuring were detected, however, and attributed to localised events giving rise to even aged stands, probably due to regeneration from a few individuals following fire.
Resumo:
Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.
Resumo:
Optimal matching of species to sites is required for a sustainable hardwood plantation industry in the subtropics. This paper reports the performance and adaptation of 60 taxa (species, provenances and hybrids) across two rainfall zones and a range of soil types in southern Queensland. Specifically, performance of taxa is compared across five replicated taxon–site matching trials at age 6 y. Three trials are in a 1000-mm y–1 rainfall zone of the Wide Bay region near Miriam Vale and two in a drier (about 750 mm y–1) rainfall zone near Kingaroy in the South Burnett region. In the higher-rainfall zone, the taxa with the fastest growth in the three trials at age 6 y were Corymbia citriodora subsp. variegata Woondum provenance, which ranked 1st, 6th and 5th respectively; E. longirostrata Coominglah provenance, ranked 3rd, 2nd and 3rd; and two sources of E. grandis, Copperlode provenance (ranked 4th and 1st) and SAPPI seed orchard (ranked 6th and 4th), which were planted in only two of the three trials. Similarly, in the lower-rainfall zone, E. grandis and its hybrids appear promising from the 6-y growth data., This excellent early growth, however, has not continued in either rainfall zone, with these taxa, 8 y after planting, now showing signs of stress and mortality. Based on trial results in these two rainfall zones, the taxon that appears the most promising for sustainable plantation development with high average annual volume index values and low incidence of borer attack is Corymbia citriodora subsp. variegata (6.7 m³ ha–1). Eucalyptus grandis and E. longirostrata both have better average annual volume indexes (8.2 m³ ha–1 and 7.4 m³ ha–1 respectively) but are very susceptible to borer attack. The current and long-term productivity and sustainability of plantation forestry in these rainfall zones is discussed. Further, the implications of predicted climate change (particularly reduced rainfall) for growing trees for fibre production and carbon sequestration are explored.
Resumo:
Spotted gum (Corymbia citriodora subsp. variegata and C. maculata) is a valuable source of commercial timber and suitable for a wide range of different soil types in eastern Australia. The main biological constraint to further expansion of spotted gum plantations is Quambalaria shoot blight caused by the fungus Quambalaria pitereka. Surveys conducted to evaluate the impact of Quambalaria shoot blight have shown that the disease is present in all spotted gum plantations and on a range of Corymbia species and hybrids in subtropical and tropical regions surveyed in eastern Australia. More recently, Q. eucalypti has also been identified from a range of Eucalyptus species in these regions. Both pathogens have also been found associated with foliage blight and die-back of amenity trees and Q. pitereka in native stands of Corymbia species, which is the probable initial infection source for plantations. Infection by Q. pitereka commonly results in the repeated destruction of the growing tips and the subsequent formation of a bushy crown or death of trees in severe cases. In comparison, Q. eucalypti causes small, limited lesions and has in some cases been associated with insect feeding. It has not been recorded as causing severe shoot and stem blight. A better understanding of factors influencing disease development and host-pathogen interactions is essential in the development of a disease management strategy for these poorly understood but important pathogens in the rapidly expanding eucalypt (Corymbia and Eucalyptus spp.) plantation industry in subtropical and tropical eastern Australia.
Resumo:
Healthy hardwoods: A field guide to pests, diseases and nutritional disorders in subtropical hardwoods can be used to help identify the common damaging insects, fungi and nutritional disorders in young eucalypt (Eucalyptus and Corymbia species) plantations in subtropical eastern Australia. This guide includes photographs of each insect, fungus and nutritional disorder and the damage they cause, along with a brief description to aid identification. A brief host list for insects and fungi, including susceptibility and occurrence, is provided as a guide only. A hand lens will be useful, especially to identify fungi. Although it is possible to identify insects and fungi from these photographs, laboratory examination will sometimes be necessary. For example, microscopes and culturing media might be used to identify fungi. Information about four exotic pests and diseases has also been included in the Biosecurity threats chapter. Potentially, these would have a severe impact on plantation and natural forests if introduced into Australia. To prevent establishment of these pests, early detection and identification is crucial. If an exotic insect or disease is suspected, then an immediate response is required. Usually, the first response will be to contact the nearest Australian Quarantine and Inspection Service office or forestry agency to seek advice.
Resumo:
Twenty eight species within Mycosphaerellaceae and Teratosphaeriaceae (includes Mycosphaerella, Teratosphaeria, Pseudocercospora and Sonderhenia) are reported from Eucalyptus and Corymbia in New South Wales and Queensland, Australia, based on field surveys and examination of herbarium specimens and published reports. Teratosphaeria cryptica was the most commonly recorded species, with the widest host range and distribution, followed by Mycosphaerella marksii. Six new species are described: T. keanei, T. coolabuniensis, T. crispata, M. medusae, M. nootherensis and T. praelongispora. New or interesting records for known species are reported, including new records for Australia (T. pluritubularis and T. verrucosiafricana) and new records for Queensland (T. excentrica, T. multiseptata, T. nubilosa, T. suberosa and Ps. pseudoeucalyptorum).
Resumo:
To refine the emerging silvicultural systems for sub-tropical eucalypt plantations to produce logs of acceptable dimensions and quality for processing into high-value solid and engineered wood products, while maintaining financial attractiveness for growers. The available resources are focussed primarily on sub-tropical Corymbia plantings.
Resumo:
Establishing the natural durability of Queensland plantation hardwoods including Corymbia citriodora, Eucalyptus cloeziana, Eucalyptus grandis, Eucalyptus microcorys and Eucalyptus pellita.
Resumo:
The aim of this project was to investigate the suitability of thinnings from a range of plantation species for use as vineyard posts. The hardwood plantation species examined were Eucalyptus grandis, E. globulus, E. pilularis, E. dunnii, E. cladocalyx and Corymbia maculata, while Acacia mearnsii was obtained from natural regrowth. The softwood plantation species were P. elliottii, P. radiata and Araucaria cunninghamii. Variables examined included: three air drying regimes; microwave conditioning of E. grandis and E. globulus; two preservative treatments for hardwoods (alkaline copper quaternary compound (ACQ) and pigment emulsified creosote (PEC)); and two preservative treatments for softwood species (ACQ and, for Pinus radiata copper chromium arsenic (CCA)). A further aim was to install treated posts in commercial vineyards for demonstration purposes. From an earlier trial of three hardwood species treated with PEC, demonstration posts previously installed were also to be inspected annually for three years, and any movement of polycyclic aromatic hydrocarbons (PAH) from the posts monitored.
Resumo:
Small spindleless veneer lathe technology was used to produce veneer sheets as an alternative processing option to optimise the use of small log plantation resource. Thinned (300 spha) and unthinned control (1000 spha) plantings of 10.5-year-old Corymbia citriodora ssp. variegata (CCV) and E. dunnii (Dunn’s white gum) grown in two contrasting sites from climatic regions with large annual rainfall differences were studied. Overall veneer gross recoveries ranged from 50% to 70%, which were up to 3 times higher than typical sawn green-off saw recoveries from small plantation hardwood logs of similar diameter. Major limiting factors preventing veneer from meeting higher grades were the presence of kino defects and encased knots. Splits in E. dunnii veneer also contributed to reduced grade quality. Differences between two thinning treatments for veneer properties and grade recovery were generally small. There was significant evidence of site and species differences on veneer quality. The good quality site with higher rainfall in northern New South Wales produced denser and stiffer veneers with higher grade recoveries. CCV is a superior structural veneer species with high wood density and hardness as well as very good veneer stiffness exceeding 15,000 MPa but Dunn’s white gum has also demonstrated good potential as a useful structural plywood resource. Results indicate that relatively high veneer recoveries were achieved for the sub-tropical plantation hardwoods combined with very superior mechanical properties which suggest that veneer production have suitable attributes for a range of engineered wood products including plywood and laminated veneer lumber.
Resumo:
Novel species of microfungi described in the present study include the following from Australia: Catenulostroma corymbiae from Corymbia, Devriesia stirlingiae from Stirlingia, Penidiella carpentariae from Carpentaria, Phaeococcomyces eucalypti from Eucalyptus, Phialophora livistonae from Livistona, Phyllosticta aristolochiicola from Aristolochia, Clitopilus austroprunulus on sclerophyll forest litter of Eucalyptus regnans and Toxicocladosporium posoqueriae from Posoqueria. Several species are also described from South Africa, namely: Ceramothyrium podocarpi from Podocarpus, Cercospora chrysanthemoides from Chrysanthemoides, Devriesia shakazului from Aloe, Penidiella drakensbergensis from Protea, Strelitziana cliviae from Clivia and Zasmidium syzygii from Syzygium. Other species include Bipolaris microstegii from Microstegium and Synchaetomella acerina from Acer (USA), Brunneiapiospora austropalmicola from Rhopalostylis (New Zealand), Calonectria pentaseptata from Eucalyptus and Macadamia (Vietnam), Ceramothyrium melastoma from Melastoma (Indonesia), Collembolispora aristata from stream foam (Czech Republic), Devriesia imbrexigena from glazed decorative tiles (Portugal), Microcyclospora rhoicola from Rhus (Canada), Seiridium phylicae from Phylica (Tristan de Cunha, Inaccessible Island), Passalora lobeliaefistulosis from Lobelia (Brazil) and Zymoseptoria verkleyi from Poa (The Netherlands). Valsalnicola represents a new ascomycete genus from Alnus (Austria) and Parapenidiella a new hyphomycete genus from Eucalyptus (Australia). Morphological and culture characteristics along with ITS DNA barcodes are also provided. © 2012 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures.
Resumo:
A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.
The use of genetic correlations to evaluate associations between SNP markers and quantitative traits
Resumo:
Open-pollinated progeny of Corymbia citriodora established in replicated field trials were assessed for stem diameter, wood density, and pulp yield prior to genotyping single nucleotide polymorphisms (SNP) and testing the significance of associations between markers and assessment traits. Multiple individuals within each family were genotyped and phenotyped, which facilitated a comparison of standard association testing methods and an alternative method developed to relate markers to additive genetic effects. Narrow-sense heritability estimates indicated there was significant additive genetic variance within this population for assessment traits ( h ˆ 2 =0.28to0.44 ) and genetic correlations between the three traits were negligible to moderate (r G = 0.08 to 0.50). The significance of association tests (p values) were compared for four different analyses based on two different approaches: (1) two software packages were used to fit standard univariate mixed models that include SNP-fixed effects, (2) bivariate and multivariate mixed models including each SNP as an additional selection trait were used. Within either the univariate or multivariate approach, correlations between the tests of significance approached +1; however, correspondence between the two approaches was less strong, although between-approach correlations remained significantly positive. Similar SNP markers would be selected using multivariate analyses and standard marker-trait association methods, where the former facilitates integration into the existing genetic analysis systems of applied breeding programs and may be used with either single markers or indices of markers created with genomic selection processes.
Resumo:
A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.