991 resultados para Correlated inventory models
Resumo:
The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed.
Resumo:
Many transportation agencies maintain grade as an attribute in roadway inventory databases; however, the information is often in an aggregated format. Cross slope is rarely included in large roadway inventories. Accurate methods available to collect grade and cross slope include global positioning systems, traditional surveying, and mobile mapping systems. However, most agencies do not have the resources to utilize these methods to collect grade and cross slope on a large scale. This report discusses the use of LIDAR to extract roadway grade and cross slope for large-scale inventories. Current data collection methods and their advantages and disadvantages are discussed. A pilot study to extract grade and cross slope from a LIDAR data set, including methodology, results, and conclusions, is presented. This report describes the regression methodology used to extract and evaluate the accuracy of grade and cross slope from three dimensional surfaces created from LIDAR data. The use of LIDAR data to extract grade and cross slope on tangent highway segments was evaluated and compared against grade and cross slope collected using an automatic level for 10 test segments along Iowa Highway 1. Grade and cross slope were measured from a surface model created from LIDAR data points collected for the study area. While grade could be estimated to within 1%, study results indicate that cross slope cannot practically be estimated using a LIDAR derived surface model.
Resumo:
Background: In longitudinal studies where subjects experience recurrent incidents over a period of time, such as respiratory infections, fever or diarrhea, statistical methods are required to take into account the within-subject correlation. Methods: For repeated events data with censored failure, the independent increment (AG), marginal (WLW) and conditional (PWP) models are three multiple failure models that generalize Cox"s proportional hazard model. In this paper, we revise the efficiency, accuracy and robustness of all three models under simulated scenarios with varying degrees of within-subject correlation, censoring levels, maximum number of possible recurrences and sample size. We also study the methods performance on a real dataset from a cohort study with bronchial obstruction. Results: We find substantial differences between methods and there is not an optimal method. AG and PWP seem to be preferable to WLW for low correlation levels but the situation reverts for high correlations. Conclusions: All methods are stable in front of censoring, worsen with increasing recurrence levels and share a bias problem which, among other consequences, makes asymptotic normal confidence intervals not fully reliable, although they are well developed theoretically.
Resumo:
Mushroom picking has become a widespread autumn recreational activity in the Central Pyrenees and other regions of Spain. Predictive models that relate mushroom production or fungal species richness with forest stand and site characteristics are not available. This study used mushroom production data from 24 Scots pine plots over 3 years to develop a predictive model that could facilitate forest management decisions when comparing silvicultural options in terms of mushroom production. Mixed modelling was used to model the dependence of mushroom production on stand and site factors. The results showed that productions were greatest when stand basal area was approximately 20 m2 ha-1. Increasing elevation and northern aspect increased total mushroom production as well as the production of edible and marketed mushrooms. Increasing slope decreased productions. Marketed Lactarius spp., the most important group collected in the region, showed similar relationships. The annual variation in mushroom production correlated with autumn rainfall. Mushroom species richness was highest when the total production was highest.
Resumo:
The present study tests the relationships between the three frequently used personality models evaluated by the Temperament Character Inventory-Revised (TCI-R), Neuroticism Extraversion Openness Five Factor Inventory – Revised (NEO-FFI-R) and Zuckerman-Kuhlman Personality Questionnaire-50- Cross-Cultural (ZKPQ-50-CC). The results were obtained with a sample of 928 volunteer subjects from the general population aged between 17 and 28 years old. Frequency distributions and alpha reliabilities with the three instruments were acceptable. Correlational and factorial analyses showed that several scales in the three instruments share an appreciable amount of common variance. Five factors emerged from principal components analysis. The first factor was integrated by A (Agreeableness), Co (Cooperativeness) and Agg-Host (Aggressiveness-Hostility), with secondary loadings in C (Conscientiousness) and SD (Self-directiveness) from other factors. The second factor was composed by N (Neuroticism), N-Anx (Neuroticism-Anxiety), HA (Harm Avoidance) and SD (Self-directiveness). The third factor was integrated by Sy (Sociability), E (Extraversion), RD (Reward Dependence), ImpSS (Impulsive Sensation Seeking) and NS (novelty Seeking). The fourth factor was integrated by Ps (Persistence), Act (Activity), and C, whereas the fifth and last factor was composed by O (Openness) and ST (Self- Transcendence). Confirmatory factor analyses indicate that the scales in each model are highly interrelated and define the specified latent dimension well. Similarities and differences between these three instruments are further discussed.
Resumo:
En el presente trabajo se presenta una revisión sobre los modelos forestales desarrollados en España durante los últimos años, tanto para la producción maderable como no maderable y, para la dinámica de los bosques (regeneración, mortalidad). Se presentan modelos tanto de rodal completo como de clases diamétricas y de árbol individual. Los modelos desarrollados hasta la fecha se han desarrollado a partir de datos procedentes de parcelas permanentes, ensayos y el Inventario Forestal Nacional. En el trabajo se muestran los diferentes submodelos desarrollados hasta la fecha, así como las plataformas informáticas que permiten utilizar dichos modelos. Se incluyen las principales perspectivas de desarrollo de la modelización forestal en España.
Identification-commitment inventory (ICI-Model): confirmatory factor analysis and construct validity
Resumo:
The aim of this study is to confirm the factorial structure of the Identification-Commitment Inventory (ICI) developed within the frame of the Human System Audit (HSA) (Quijano et al. in Revist Psicol Soc Apl 10(2):27-61, 2000; Pap Psicól Revist Col Of Psicó 29:92-106, 2008). Commitment and identification are understood by the HSA at an individual level as part of the quality of human processes and resources in an organization; and therefore as antecedents of important organizational outcomes, such as personnel turnover intentions, organizational citizenship behavior, etc. (Meyer et al. in J Org Behav 27:665-683, 2006). The theoretical integrative model which underlies ICI Quijano et al. (2000) was tested in a sample (N = 625) of workers in a Spanish public hospital. Confirmatory factor analysis through structural equation modeling was performed. Elliptical least square solution was chosen as estimator procedure on account of non-normal distribution of the variables. The results confirm the goodness of fit of an integrative model, which underlies the relation between Commitment and Identification, although each one is operatively different.
Resumo:
Tutkielman tarkoituksena oli mallintaa varastonhallintajärjestelmä, joka olisi sopiva case yritykselle. Tutkimus aloitettiin case yrityksen varastonhallinan nykytilan kartoituksella, jonka jälkeen tutkittiin varastonhallinnan eri osa-alueisiin. Varastonhallinnan osa-alueista käsiteltiin varastotyyppejä, motiiveja, tavoitteita, kysynnän ennustamista sekä erilaisia varastonhallinnan työkaluja. Sen lisäksi tutkittiin erilaisia varaston täydennysmalleja. Teoriaosuudessa käsiteltiin lisäksi kolmea erilaista tietojärjestelmätyyppiä: toiminnanohjausjärjestelmää, sähköisen kaupankäynnin järjestelmää sekä räätälöityä järjestelmää. Tutkimussuunnitelmassa nämä kolme järjestelmää rajattiin vaihtoehdoiksi, joista jokin valittaisiin case yrityksen varastonhallintajärjestelmäksi. Teorian ja nykytilan pohjalta tehtiin viitekehys, jossa esiteltiin varastonhallintajärjestelmän tieto- ja toiminnallisuusominaisuuksia. Nämä ominaisuudet priorisoitiin neljään eri luokkaan ominaisuuden kriittisyyden mukaan. Järjestelmävaihtoehdot arvioitiin viitekehyksen kriteerien mukaisesti, miten helposti ominaisuudet olisivat toteutettavissa eri vaihtoehdoissa. Tulokset laskettiin näiden arviointien perusteella, jonka jälkeen tulosten analysoinnissa huomattiin, että toiminnanohjausjärjestelmä sopisi parhaiten case yrityksen varastonhallintajärjestelmäksi.
Resumo:
Background: In longitudinal studies where subjects experience recurrent incidents over a period of time, such as respiratory infections, fever or diarrhea, statistical methods are required to take into account the within-subject correlation. Methods: For repeated events data with censored failure, the independent increment (AG), marginal (WLW) and conditional (PWP) models are three multiple failure models that generalize Cox"s proportional hazard model. In this paper, we revise the efficiency, accuracy and robustness of all three models under simulated scenarios with varying degrees of within-subject correlation, censoring levels, maximum number of possible recurrences and sample size. We also study the methods performance on a real dataset from a cohort study with bronchial obstruction. Results: We find substantial differences between methods and there is not an optimal method. AG and PWP seem to be preferable to WLW for low correlation levels but the situation reverts for high correlations. Conclusions: All methods are stable in front of censoring, worsen with increasing recurrence levels and share a bias problem which, among other consequences, makes asymptotic normal confidence intervals not fully reliable, although they are well developed theoretically.
Resumo:
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes.
Resumo:
In the context of the publication of DSM-5, the Personality Inventory for DSM-5 (PID-5) has been proposed as a new dimensional assessment tool for personality disorders. This instrument includes a pool of 220 items organized around 25 facets included in a five-factor second-order domain structure. The examination of the replicability of the trait structure across methods and populations is of primary importance. In view of this need, the main objective of the current study was to validate the French version of the PID-5 among French-speaking adults from a European community sample (N=2,532). In particular, the assumption of unidimensionality of the 25 facet and the five domain scales was tested, as well as the extent to which the five-factor structure of the PID-5 and the DSM-5 personality trait hierarchical structure are replicated in the current sample. The results support the assumption of unidimensionality of both the facets and the domains. Exploratory factor and hierarchical analyses replicated the five-factor structure as initially proposed in the PID-5.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.
Resumo:
Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.
Resumo:
This work evaluated eight hypsometric models to represent tree height-diameter relationship, using data obtained from the scaling of 118 trees and 25 inventory plots. Residue graphic analysis and percent deviation mean criteria, qui-square test precision, residual standard error between real and estimated heights and the graybill f test were adopted. The identity of the hypsometric models was also verified by applying the F(Ho) test on the plot data grouped to the scaling data. It was concluded that better accuracy can be obtained by using the model prodan, with h and d1,3 data measured in 10 trees by plots grouped into these scaling data measurements of even-aged forest stands.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.