975 resultados para Core-specific Lectin
Resumo:
A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80A degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 A mu g/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.
Resumo:
BACKGROUND: Earlier we reported that an oral administration of two mannose-specific dietary lectins, banana lectin (BL) and garlic lectin (GL), led to an enhancement of hematopoietic stem and progenitor cell (HSPC) pool in mice. STUDY DESIGN AND METHODS: Cord blood–derived CD34+ HSPCs were incubated with BL, GL, Dolichos lectin (DL), or artocarpin lectin (AL) for various time periods in a serum- and growth factor–free medium and were subjected to various functional assays. Reactive oxygen species (ROS) levels were detected by using DCHFDA method. Cell fractionation was carried out using lectin-coupled paramagnetic beads. RESULTS: CD34+ cells incubated with the lectins for 10 days gave rise to a significantly higher number of colonies compared to the controls, indicating that all four lectins possessed the capacity to protect HSPCs in vitro. Comparative analyses showed that the protective ability of BL and GL was better than AL and DL and, therefore, further experiments were carried out with them. The output of long-term culture-initiating cell (LTC-IC) and extended LTC-IC assays indicated that both BL and GL protected primitive stem cells up to 30 days. The cells incubated with BL or GL showed a substantial reduction in the ROS levels, indicating that these lectins protect the HSPCs via antioxidant mechanisms. The mononuclear cell fraction isolated by lectin-coupled beads got enriched for primitive HSPCs, as reflected in the output of phenotypic and functional assays. CONCLUSION: The data show that both BL and GL protect the primitive HSPCs in vitro and may also serve as cost-effective HSPC enrichment tools.
Resumo:
A central question in biological chemistry is the minimal structural requirement of a protein that would determine its specificity and activity, the underlying basis being the importance of the entire structural element of a protein with regards to its activity vis a vis the overall integrity and stability of the protein. Although there are many reports on the characterization of protein folding/ unfolding intermediates, with considerable secondary structural elements but substantial loss of tertiary structure, none of them have been reported to show any activity toward their respective ligands. This may be a result of the conditions under which such intermediates have been isolated or due to the importance of specific structural elements for the activity. In this paper we report such an intermediate in the unfolding of peanut agglutinin that seems to retain, to a considerable degree, its carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and the quaternary association in legume lectins in particular, where precise subunit topology is required for their biologic activities.
Resumo:
Complex typeN-linked oligosaccharides derived from fetuin, fibrinogen and thyroglobulin were coupled to acetyltyrosine affording a series of neoglycopeptides with retention of terminal structures and the beta-anomeric configuration of their reducing endN-acetylglycosamine residue. The neoglycopeptides thus synthesized could be labelled to high specific activities with125I in the aromatic side chain of tyrosine. Analysis of the fate of these neoglycopeptides in conjunction with inhibition with asialofetuin and oligosaccharides of defined structure in micein vivo revealed the uptake of galactosylated biantennary compound by kidneys, in addition to the known itinerary of triantennary galactosylated complex oligosaccharide from fetuin to liver and the galactosylated biantennary chain with fucosylation in the core to bone marrows. On the other hand, the agalacto, aglucosamino biantennary chains with and without fucosylation in the core region are taken up by submaxillary glands while the conserved trimannosyl core with fucose is primarily concentrated in stomach tissue. These studies thus define new routes for the uptake of complexN-linked glycans and also subserve to identify lectins presumably involved in their recognition.
Resumo:
The carbohydrate binding specificity of the basic lectin from winged bean (Psophocarpus tetragonolobus) was investigated by quantitative precipitin analysis using blood group A, B, H, Le and I substances and by precipitation inhibition with various mono- and oligosaccharides. The lectin precipitated best with A1 substances and moderately with B and A2 substances, but not with H or Le substances. Inhibition assays of lectin-blood group A1 precipitation demonstration that A substance-derived oligosaccharides having the common structure: d-Ga1NAcα(1 → 3)d-Gal-(β1 → Image ) to a d-Glc, were the best inhibitors and about 8 and 4 times more active than d-Ga1NAc and d-Ga1NAcα(1 → 3)d-Ga1, respectively. A difucosyl A-specific oligosaccharide (A-penta), a monofucosyl (A-tetra) and a non-fucosyl containing (A5 II) oligosaccharide, d-Ga1NAcα(1 → 3)d-Ga1β(1 → 3)d-G1cNAc, had almost the same reactivity, suggesting that the fucose linked to the sub-terminal d-Ga1 or to the third sugar, d-GlcNAc, from the non-reducing end made no contribution to the carbohydrate binding. Although a terminal non-reducing d-Ga1NAc or d-Ga1 residue was indispensible for binding, the lectin bound not only to these terminal non-reducing galactopyranosyl residues, but also showed increased binding to oligosaccharides in which it was bonded to a sub-terminal d-Ga1 joined to a d-GlcNAc residue, as in blood group A or B substances. This defines the site, thus far, as complementary to a disaccharide plus the β linkage to the third sugar (d-Glc or d-GlcNAc) from the non-reducing end. The role of the β(1 → 3) or β(1 → 4) linkage of the sub-terminal non-reducing d-Gal to the d-GlcNAc requires further study.
Resumo:
n acidic lectin (WBA II) was isolated to homogeneity from the crude seed extract of the winged bean (Psophocarpus tetragonolobus) by affinity chromatography on lactosylaminoethyl-Bio-Gel. Binding of WBA II to human erythrocytes of type-A, -B and -O blood groups showed the presence of 10(5) receptors/cell, with high association constants (10(6)-10(8) M-1). Competitive binding studies with blood-group-specific lectins reveal that WBA II binds to H- and T-antigenic determinants on human erythrocytes. Affinity-chromatographic studies using A-, B-, H- and T-antigenic determinants coupled to an insoluble matrix confirm the specificity of WBA II towards H- and T-antigenic determinants. Inhibition of the binding of WBA II by various sugars show that N-acetylgalactosamine and T-antigenic disaccharide (Thomsen-Friedenreich antigen, Gal beta 1-3GalNAc) are the most potent mono- and di-saccharide inhibitors respectively. In addition, inhibition of the binding of WBA II to erythrocytes by dog intestine H-fucolipid prove that the lectin binds to H-antigenic determinant.
Resumo:
It is currently believed that an unsubstituted axial hydroxyl at the specificity-determining C-4 locus of galactose is indispensable for recognition by galactose/N-acetylgalactosamine-specific lectins. Titration calorimetry demonstrates that 4-methoxygalactose retains binding allegiance to the Moraceae lectin jacalin and the Leguminosae lectin, winged bean (basic) agglutinin (WBA I). The binding reactions were driven by dominant favorable enthalpic contributions and exhibited significant enthalpy-entropy compensation. Proton NMR titration of C-methoxygalactose with jacalin and WBA I resulted in broadening of the sugar resonances without any change in chemical shift. The alpha-and beta-anomers of 4-methoxygalactose were found to be in slow exchange with free and lectin-bound states. Both the anomers experience magnetically equivalent environments at the respective binding sites. The binding constants derived from the dependence of NMR line widths on 4-methoxygalactose concentration agreed well with those obtained from titration calorimetry. The results unequivocally demonstrate that the loci corresponding to the axially oriented C-4 hydroxyl group of galactose within the primary binding site of these lectins exhibit plasticity. These analyses suggest, for the first time, the existence of C-H ... O-type hydrogen-bond(s) in protein-carbohydrate interactions in general and between the C-4 locus of galactose derivative and the lectins jacalin and WBA I in particular.
Resumo:
Circular dichroism studies have revealed that addition of testis specific protein, TP in vitro, to rat testes nucleosome core particle resulted in a decrease in the compaction of the core particle DNA. This was also corroborated by thermal denaturation analysis. Addition of TP to nucleosome core particle resulted in the conversion of a biphasic transition towards a single phase. However, at the same time there was a 20% reduction in the overall hyperchromicity of core particle DNA at core particle to TP molar ratios of 1:2 and 1:3. These observations along with our earlier report, showing the DNA melting properties of TP, suggest that TP may play an important role in the disassembly process of nucleosome core particle during spermiogenesis.
Resumo:
Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-agrGalNAc and for jack fruit agglutinin (JFA) is Me-agrGal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.
Resumo:
BACKGROUND: Earlier we reported that an oral administration of two mannose-specific dietary lectins, banana lectin (BL) and garlic lectin (GL), led to an enhancement of hematopoietic stem and progenitor cell (HSPC) pool in mice. STUDY DESIGN AND METHODS: Cord blood derived CD34+ HSPCs were incubated with BL, GL, Dolichos lectin (DL), or artocarpin lectin (AL) for various time periods in a serum- and growth factor free medium and were subjected to various functional assays. Reactive oxygen species (ROS) levels were detected by using DCHFDA method. Cell fractionation was carried out using lectin-coupled paramagnetic beads. RESULTS: CD34+ cells incubated with the lectins for 10 days gave rise to a significantly higher number of colonies compared to the controls, indicating that all four lectins possessed the capacity to protect HSPCs in vitro. Comparative analyses showed that the protective ability of BL and GL was better than AL and DL and, therefore, further experiments were carried out with them. The output of long-term culture-initiating cell (LTC-IC) and extended LTC-IC assays indicated that both BL and GL protected primitive stem cells up to 30 days. The cells incubated with BL or GL showed a substantial reduction in the ROS levels, indicating that these lectins protect the HSPCs via antioxidant mechanisms. The mononuclear cell fraction isolated by lectin-coupled beads got enriched for primitive HSPCs, as reflected in the output of phenotypic and functional assays.CONCLUSION: The data show that both BL and GL protect the primitive HSPCs in vitro and may also serve as cost-effective HSPC enrichment tools.
Resumo:
A relatively stable specific complex of the chromatin core histones H2A, H2B, H3, and H4 has been obtained in 2 M NaCl/25 mM sodium phosphate buffer, pH 7.0. The histone core complex has an apparent specific volume of 0.73 ml/g. Its sedimentation coefficient was dependent on rotor speed (angular velocity, omega) and attained different stable values at low and high rotor speeds. The drop in sedimentation coefficient occurred sharply between omega 2 values of about 9 x 10(6) and 1.1 x 10(7) (radians/sec)2. The s020,w corresponding to zero angular velocity (1 atmosphere pressure) was 6.6 S +/- (SEM) 0.1 S. At high rotor speeds the value decreased to 3.8 S +/- 0.1 S. The core complex has a diffusion coefficient, D20,w, of 5.4 x 10(-7) cm2/sec and a molecular weight of 108,000 +/- (SD) 2500.
Resumo:
The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.
Resumo:
The three crystal structures reported here provide details of the interactions of mannose and the mannosyl-alpha-1,3-mannose component of a pentamannose with banana lectin and evidence for the binding of glucosyl-alpha-1,2-glucose to the lectin. The known structures involving the lectin include a complex with glucosyl-beta-1,3-glucose. Modeling studies on the three disaccharide complexes with the reducing end and the nonreducing end at the primary binding site are also provided here. The results of the Xray and modeling studies show that the disaccharides with an alpha-1,3 linkage prefer to have the nonreducing end at the primary binding site, whereas the reducing end is preferred at the site when the linkage is beta-1,3 in mannose/glucose-specific beta-prism I fold lectins. In the corresponding galactose-specific lectins, however, alpha-1,3-linked disaccharides cannot bind the lectin with the nonreducing end at the primary binding site on account of steric clashes with an aromatic residue that occurs only when the lectin is galactose-specific. Molecular dynamics simulations based on the known structures involving banana lectin enrich the information on lectin-carbohydrate interactions obtained from crystal structures. They demonstrate that conformational selection as well as induced fit operate when carbohydrates bind to banana lectin.
Resumo:
Sandalwood is an economically important aromatic tree belonging to the family Santalaceae. The trees are used mainly for their fragrant heartwood and oil that have immense potential for foreign exchange. Very little information is available on the genetic diversity in this species. Hence studies were initiated and genetic diversity estimated using RAPD markers in 51 genotypes of Santalum album procured from different geographcial regions of India and three exotic lines of S. spicatum from Australia. Eleven selected Operon primers (10mer) generated a total of 156 consistent and unambiguous amplification products ranging from 200bp to 4kb. Rare and genotype specific bands were identified which could be effectively used to distinguish the genotypes. Genetic relationships within the genotypes were evaluated by generating a dissimilarity matrix based on Ward's method (Squared Euclidean distance). The phenetic dendrogram and the Principal Component Analysis generated, separated the 51 Indian genotypes from the three Australian lines. The cluster analysis indicated that sandalwood germplasm within India constitutes a broad genetic base with values of genetic dissimilarity ranging from 15 to 91 %. A core collection of 21 selected individuals revealed the same diversity of the entire population. The results show that RAPD analysis is an efficient marker technology for estimating genetic diversity and relatedness, thereby enabling the formulation of appropriate strategies for conservation, germplasm management, and selection of diverse parents for sandalwood improvement programmes.
Resumo:
The three-point bending behavior of sandwich beams made up of jute epoxy skins and piecewise linear functionally graded (FG) rubber core reinforced with fly ash filler is investigated. This work studies the influence of the parameters such as weight fraction of fly ash, core to thickness ratio, and orientation of jute on specific bending modulus and strength. The load displacement response of the sandwich is traced to evaluate the specific modulus and strength. FG core samples are prepared by using conventional casting technique and sandwich by hand layup. Presence of gradation is quantified experimentally. Results of bending test indicate that specific modulus and strength are primarily governed by filler content and core to sandwich thickness ratio. FG sandwiches with different gradation configurations (uniform, linear, and piecewise linear) are modeled using finite element analysis (ANSYS 5.4) to evaluate specific strength which is subsequently compared with the experimental results and the best gradation configuration is presented. POLYM. COMPOS., 32:1541-1551, 2011. (C) 2011 Society of Plastics Engineers