321 resultados para Corantes fluorescentes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile industry is one of the most polluting in the world (AHMEDCHEKKAT et al. 2011), generating wastewater with high organic loading. Among the pollutants present in these effluents are dyes, substances with complex structures, toxic and carcinogenic characteristics, besides having a strong staining. Improper disposal of these substances to the environment, without performing a pre-treatment can cause major environmental impacts. The objective this thesis to use a technique of electrochemical oxidation of boron doped diamond anode, BDD, for the treatment of a synthetic dye and a textile real effluent. In addition to studying the behavior of different electrolytes (HClO4, H3PO4, NaCl and Na2SO4) and current densities (15, 60, 90 and 120 mA.cm-2 ), and compare the methods with Rhodamine B (RhB) photolysis, electrolysis and photoelectrocatalytic using H3PO4 and Na2SO4. Electrochemical oxidation studies were performed in different ratio sp3 /sp2 of BDD with solution of RhB. To achieve these objectives, analysis of pH, conductivity, UV-visible, TOC, HPLC and GC-MS were developed. Based on the results with the Rhodamine B, it was observed that in all cases occurred at mineralization, independent of electrolyte and current density, but these parameters affect the speed and efficiency of mineralization. The radiation of light was favorable during the electrolysis of RhB with phosphate and sulfate. Regarding the oxidation in BDD anode with different ratio sp3 /sp2 (165, 176, 206, 220, 262 e 329), with lower carbon-sp3 had a longer favoring the electrochemical conversion of RhB, instead of combustion. The greater the carbon content on the anodes BDD took the biggest favor of direct electrochemical oxidation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile sector is one of the main contributors to the generation of industrial wastewaters due to the use of large volumes of water, which has a high organic load content. In these, it is observed to the presence of dyes, surfactants, starch, alcohols, acetic acid and other constituents, from the various processing steps of the textiles. Hence, the treatment of textile wastewater becomes fundamental before releasing it into water bodies, where they can cause disastrous physical-chemical changes for the environment. Surfactants are substances widely used in separation processes and their use for treating textile wastewaters was evaluated in this research by applying the cloud point extraction and the ionic flocculation. In the cloud point extraction was used as surfactant nonylphenol with 9.5 ethoxylation degree to remove reactive dye. The process evaluation was performed in terms of temperature, surfactant and dye concentrations. The dye removal reached 91%. The ionic flocculation occurs due to the presence of calcium, which reacts with anionic surfactant to form insoluble surfactants capable of attracting the organic matter by adsorption. In this work the ionic flocculation using base soap was applied to the treatment of synthetic wastewater containing dyes belonging to three classes: direct, reactive, and disperse. It was evaluated by the influence of the following parameters: surfactant and electrolyte concentrations, stirring speed, equilibrium time, temperature, and pH. The flocculation of the surfactant was carried out in two ways: forming the floc in the effluent itself and forming the floc before mixing it to the effluent. Removal of reactive and direct dye, when the floc is formed into textile effluent was 97% and 87%, respectively. In the case where the floc is formed prior to adding it to the effluent, the removal to direct and disperse dye reached 92% and 87%, respectively. These results show the efficience of the evaluated processes for dye removal from textile wastewaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searches using organoclays have been the subject of great interest due to its wide application in industry and removal of environmental pollutants. The organoclays were obtained using bentonite (BEN) and cationic surfactants: hexadecyltrimethyl ammonium bromide (HDTMA-Br) and trimethyloctadecyl ammonium bromide (TMOA-Br) in ratios of 50 and 100 % of its ion exchange capacity. The materials were characterized by the techniques of X-ray diffraction (DRX), infrared spectroscopy (IR), X-ray fluorescence (FRX), thermal analysis (TA) and scanning electron microscopy (SEM). The bentonite and organobentonite were used on the adsorption of dyes, Remazol Blue RR (AZ) and Remazol Red RR (VM) in aqueous solution. The adsorption models of Langmuir and Freundlich were used for mathematical description of sorption equilibrium data and obtain the constants of the isotherms. The Freundlich model fit to the data for adsorption equilibrium of bentonite, on the other hand both the model fit to the Langmuir adsorption test of organoclays. The adsorption processes using adsorbents with both dyes interspersed with HDTMA-Br show endothermic and exothermic nature, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile effluents are a complex mixture of many pollutants that contain high organic loads, severe color and toxic compounds. The high concentration of the textile effluent may cause increased chemical demand (COD) and biochemical (BOD) of oxygen, elevated temperature, acidity or alkalinity, causing damage and environmental problems. In addition to representing a serious threat to human health such effluent is also quite toxic to most aquatic organisms. And for this reason, one must meet the concentration limits for emission sources and sewage system. This study aimed to investigate the performance of electrochemical treatment of a textile effluent for the removal of color, turbidity, dissolved oxygen (DO) and dissolved organic matter by investigating the influence of experimental parameters such as the electrocatalyst materials (Ti/Pt and Ti/Pt-SnSb) and current density in order to compare their efficiency, energy consumption and cost. The dye Novacron Blue CD (NB) was employed in synthetic solution, while the dyes Remazol Yellow 3RS (RY 3RS) Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) were used to generate simulated textile effluent laboratory. The results showed that the application of electrochemical oxidation process favors the elimination of color effectively independent the electrocatalytic material and current used, as well as treated effluent. However, the influence of electrocatalytic material was crucial to reduction of the organic matter in all cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of oxidative electrochemical treatment coupled with adsorption process using expanded perlite as adsorbent in the removal of textile dyes, Red Remazol and Novacron Blue on synthetic effluent. Dyes and perlite were characterized by thermogravimetry techniques (TG), Differential Scanning Calorimetry (DSC), Spectroscopy infrared (IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Electrochemical treatments used as anodes, Ti/Pt and Pb/PbO2 under different conditions: 60 minutes, current density 20, 40 e 60 mAcm-2, pH 1, 4.5 e 8 and temperature variation 20, 40 e 60 ºC. In the case of adsorption tests, contact time of 30 minutes for the Remazol Red dye and 20 minutes for Novacron Blue were established, while pH 1, 4.5 e 8, 500 mg adsorbent and temperature variation 20, 40 e 60 ºC were used for both treatments. The results indicated that both treatments, electroxidation/adsorption and the adsorption/electroxidation, were effective for removing color from synthetic solutions. The consumption of electricity allowed to evaluate the applicability of the electrochemical process, providing very acceptable values, which allowed us to estimate the cost. Total organic carbon (TOC) and Gas Chromatography linked mass spectrometer (GC-MS) analyzes were performed, showing that the better combination for removing organic matter is by Pb/PbO2 and perlite. Meanwhile, GC-MS indicated that the by-products formed are benzoic acid, phthalic acid, thiocarbamic acid, benzene, chlorobenzene, phenol-2-ethyl and naphthalene when Remazol Red was degraded. Conversely, aniline, phthalic acid, 1, 6 - dimethylnaphthalene, naphthalene and ion hidroxobenzenosulfonat was detected when Novacron Blue was studied. Analyses obtained through atomic absorption spectrometry showed that there was release of lead in the electrochemical oxidation of analyzes that were performed with the anode Pb/PbO2, but these values are reduced by subjecting the effluent to adsorption analysis. According to these results, sequential techniques electroxidation/adsorption and adsorption/electroxidation are to treat solutions containing dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of oxidative electrochemical treatment coupled with adsorption process using expanded perlite as adsorbent in the removal of textile dyes, Red Remazol and Novacron Blue on synthetic effluent. Dyes and perlite were characterized by thermogravimetry techniques (TG), Differential Scanning Calorimetry (DSC), Spectroscopy infrared (IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Electrochemical treatments used as anodes, Ti/Pt and Pb/PbO2 under different conditions: 60 minutes, current density 20, 40 e 60 mAcm-2, pH 1, 4.5 e 8 and temperature variation 20, 40 e 60 ºC. In the case of adsorption tests, contact time of 30 minutes for the Remazol Red dye and 20 minutes for Novacron Blue were established, while pH 1, 4.5 e 8, 500 mg adsorbent and temperature variation 20, 40 e 60 ºC were used for both treatments. The results indicated that both treatments, electroxidation/adsorption and the adsorption/electroxidation, were effective for removing color from synthetic solutions. The consumption of electricity allowed to evaluate the applicability of the electrochemical process, providing very acceptable values, which allowed us to estimate the cost. Total organic carbon (TOC) and Gas Chromatography linked mass spectrometer (GC-MS) analyzes were performed, showing that the better combination for removing organic matter is by Pb/PbO2 and perlite. Meanwhile, GC-MS indicated that the by-products formed are benzoic acid, phthalic acid, thiocarbamic acid, benzene, chlorobenzene, phenol-2-ethyl and naphthalene when Remazol Red was degraded. Conversely, aniline, phthalic acid, 1, 6 - dimethylnaphthalene, naphthalene and ion hidroxobenzenosulfonat was detected when Novacron Blue was studied. Analyses obtained through atomic absorption spectrometry showed that there was release of lead in the electrochemical oxidation of analyzes that were performed with the anode Pb/PbO2, but these values are reduced by subjecting the effluent to adsorption analysis. According to these results, sequential techniques electroxidation/adsorption and adsorption/electroxidation are to treat solutions containing dyes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os estudos de adsorção de corantes alimentícios de soluções aquosas geralmente estão voltados para a remoção de um corante específico, porém, as misturas binárias são mais realistas para simular efluentes industriais. A adsorção de corantes com quitosana é considerada uma tecnologia alternativa eco amigável, e quando a estrutura da quitosana é modificada quimicamente, resulta em um adsorvente mais adequado. A reticulação da quitosana com cianoguanidina apresenta vantagens, como melhoria na estabilidade em soluções ácidas e diminuição do custo do adsorvente. Nesta pesquisa, o objetivo do trabalho foi modificar a quitosana com cianoguanidina para remoção de corantes alimentícios em sistema aquoso binário. A fim de verificar o comportamento dos adsorventes na operação de adsorção, foram preparadas amostras de quitosana com diferentes graus de desacetilação (75%, 85% e 95%), e após, foram realizadas modificações destas amostras com cianoguanidina. Os adsorventes foram caracterizados e aplicados para a adsorção de azul indigotina e amarelo tatrazina em sistema aquoso binário e em sistema simples. O efeito do pH e do grau de desacetilação foram verificados para a remoção dos corantes por quitosana com e sem modificação em sistema simples e binário. Curvas de equilíbrio foram obtidas em diferentes temperaturas e o modelo estendido de Langmuir foi ajustado aos dados experimentais. O comportamento cinético foi avaliado através dos modelos pseudo-primeira ordem, pseudo-segunda ordem e Avrami. Os parâmetros termodinâmicos foram determinados e estudos de dessorção do adsorvente foram realizados. O pH mais adequado foi 3, e o melhor grau de desacetilação foi 95% para ambos os sistemas aquosos e adsorbatos. As capacidades de adsorção da quitosana sem e com modificação não apresentaram diferença significativa. O modelo de Langmuir estendido apresentou ajuste adequado às curvas de equilíbrio e as máximas capacidades de adsorção foram 595,3 e 680,0 mg g-1, obtidas à 25ºC, para o os corantes azul indigotina e amarelo tatrazina, respectivamente. O modelo de Avrami foi o que melhor se ajustou aos dados cinéticos de adsorção. A dessorção do adsorvente foi possível por dois ciclos, mantendo sua capacidade de adsorção em 209,7 mg g-1 no primeiro ciclo e 200,2 mg g-1 no segundo ciclo. A quitosana modificada com cianoguanidina apresentou-se como um adsorvente promissor para a remoção de corantes alimentícios em sistema binário.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso de corantes sintéticos na indústria de alimentos tem provocado transtornos à saúde humana e ao meio ambiente. A quitosana pode ser imobilizada em matrizes sólidas e aplicada na remoção de corantes em coluna de leito fixo. A análise da dinâmica de uma coluna de leito fixo é baseada na curva de ruptura, esta é dependente da geometria da coluna, das condições operacionais e dos dados de equilíbrio. Neste contexto, o objetivo deste trabalho foi estudar o recobrimento de esferas de vidro por quitosana e sua aplicação como adsorvente de corantes em coluna de leito fixo. No estudo do recobrimento avaliaram-se os efeitos da concentração de quitosana e dos métodos de cura. As esferas recobertas foram aplicadas em ensaios de adsorção estático e dinâmico. Inicialmente, avaliou-se o equilíbrio de adsorção através da construção de isotermas e ajuste de modelos, e após, avaliaram-se os efeitos do tipo de cura e do grau de desacetilação da quitosana. Em seguida, foram analisados os efeitos do tipo de corante e do pH, e o comportamento cinético da adsorção pela construção de curvas de ruptura e ajuste de modelos dinâmicos. A influência da altura do leito e da concentração inicial de corante sobre os parâmetros da adsorção em leito fixo foram analisados através da metodologia de superfície de resposta (MSR). Ao final, estudou-se a regeneração da coluna. Os resultados mostraram que os maiores percentuais de recobrimento foram obtidos pelos métodos físico e físico/químico, na concentração de quitosana de 0,5% (m/v). Nestas condições o percentual de recobrimento foi de 46%. Nas imagens da superfície das esferas (MEV) observou-se que as mesmas foram recobertas de forma homogênea pela quitosana. As isotermas de equilíbrio obtidas foram classificadas como do tipo V, sendo o modelo de Sips o mais adequado para representar os dados experimentais. As capacidades máximas de adsorção foram 337 mg g-1, 286 mg g-1 e 200 mg g-1 para os corantes amarelo tartrazina, amarelo crepúsculo e vermelho 40, respectivamente. A aplicação das esferas recobertas com quitosana em leito fixo mostrou-se mais adequada utilizando o método de cura físico/químico e quitosana com grau de desacetilação de 85%. A máxima capacidade de adsorção da coluna em função do corante e do pH variou de 13 a 108 mg g–1. Os modelos BDST (bed–depth–service–time), Thomas e Yoon–Nelson foram adequados para representar os dados experimentais. De acordo com a MSR, o melhor desempenho do leito foi com altura de 30 cm e concentração inicial de corante de 50 mg L-1. Nestas condições, obteve-se tempo de ruptura de 88 min, máxima capacidade da coluna de 108 mg g-1 e remoção de 86 %. Na regeneração da coluna observou-se que cerca de 75% da capacidade máxima da coluna foi mantida após cinco ciclos de adsorção–eluição. Diante do exposto, a coluna de leito fixo empacotada com esferas recobertas com quitosana mostrou-se promissora na remoção de corantes de soluções aquosas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile industry generates a large volume of high organic effluent loading whoseintense color arises from residual dyes. Due to the environmental implications caused by this category of contaminant there is a permanent search for methods to remove these compounds from industrial waste waters. The adsorption alternative is one of the most efficient ways for such a purpose of sequestering/remediation and the use of inexpensive materials such as agricultural residues (e.g., sugarcane bagasse) and cotton dust waste (CDW) from weaving in their natural or chemically modified forms. The inclusion of quaternary amino groups (DEAE+) and methylcarboxylic (CM-) in the CDW cellulosic structure generates an ion exchange capacity in these formerly inert matrix and, consequently, consolidates its ability for electrovalent adsorption of residual textile dyes. The obtained ionic matrices were evaluated for pHpcz, the retention efficiency for various textile dyes in different experimental conditions, such as initial concentration , temperature, contact time in order to determine the kinetic and thermodynamic parameters of adsorption in batch, turning comprehensive how does occur the process, then understood from the respective isotherms. It was observed a change in the pHpcz for CM--CDW (6.07) and DEAE+-CDW (9.66) as compared to the native CDW (6.46), confirming changes in the total surface charge. The ionized matrices were effective for removing all evaluated pure or residual textile dyes under various tested experimental conditions. The kinetics of the adsorption process data had best fitted to the model a pseudosecond order and an intraparticle diffusion model suggested that the process takes place in more than one step. The time required for the system to reach equilibrium varied according to the initial concentration of dye, being faster in diluted solutions. The isotherm model of Langmuir was the best fit to the experimental data. The maximum adsorption capacity varied differently for each tested dye and it is closely related to the interaction adsorbent/adsorbate and dye chemical structure. Few dyes obtained a linear variation of the balance ka constant due to the inversion of temperature and might have influence form their thermodynamic behavior. Dyes that could be evaluated such as BR 18: 1 and AzL, showed features of an endothermic adsorption process (ΔH° positive) and the dye VmL presented exothermic process characteristics (ΔH° negative). ΔG° values suggested that adsorption occurred spontaneously, except for the BY 28 dye, and the values of ΔH° indicated that adsorption occurred by a chemisorption process. The reduction of 31 to 51% in the biodegradability of the matrix after the dye adsorption means that they must go through a cleaning process before being discarded or recycled, and the regeneration test indicates that matrices can be reused up to five times without loss of performance. The DEAE+-CDW matrix was efficient for the removal of color from a real textile effluent reaching an UV-Visible spectral area decrease of 93% when applied in a proportion of 15 g ion exchanger matrix L-1 of colored wastewater, even in the case of the parallel presence of 50 g L-1 of mordant salts in the waste water. The wide range of colored matter removal by the synthesized matrices varied from 40.27 to 98.65 mg g-1 of ionized matrix, obviously depending in each particular chemical structure of the dye upon adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.