888 resultados para Copper(II) Dithiocarbamates,
Resumo:
The mononuclear Cu(II) complex [Cu(phen)(H2O)(NO3)(2)] (1), obtained by the reaction of 1,10-phenanthroline with Cu(NO3)(2)center dot 3H(2)O in methanol solution, reacts with anionic ligands SCN-, AcO-, N-3(-) and PhCO2- in MeOH solution to form the stable binuclear complexes [Cu-2(H2O)(2)(phen)(2)(mu-X)(2)](2) (NO3)(2), where X = SCN- (2), AcO- (3), N-3(-) (4) or PhCO2- (5). The molecular structure of complex 3 was determined by single-crystal X-ray diffraction studies. These complexes were characterized by electronic, IR, ESR, magnetic moments and conductivity measurements. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry. The interactions of these complexes with calf thymus DNA have been investigated using absorption spectrophotometry. Their DNA cleavage activity was studied on double-stranded pBR322 plasmid DNA using gel electrophoresis experiments in the absence and presence of H2O2 as oxidant.
Resumo:
Ferrocene-conjugated reduced Schiff base (Fc-metH) copper(II) complexes of L-methionine and phenanthroline bases, namely, Cu(Fc-met)(B)](NO3), where B is 1,10-phenanthroline (phen in 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2), dipyrido3,2-a:2',3'-c]phenazine (dppz in 3), and 2-(naphthalen-1-yl)-1H-imidazo4,5-f]1,10]phenanthroline (nip in 4), were prepared and characterized and their photocytotoxicity studied (Fc = ferrocenyl moiety). Complexes Cu(Ph-met)(B)](NO3) of the reduced Schiff base from benzaldehyde and L-methionine (Ph-metH) and B (phen in 5, dppz in 6) were prepared and used as control species. Complexes 1 and 5 were structurally characterized by X-ray crystallography. Complex 1 as a discrete monomer has a CuN3OS core with the thiomethyl group as the axial ligand. Complex 5 has a polymeric structure with a CuN3O2 core in the solid state. Complexes 5 and 6 are formulated as Cu(Ph-met)(B)(H2O)] (NO3) in an aqueous phase based on the mass spectral data. Complexes 1-4 showed the Cu(II)-Cu(I) and Fc(+)-Fc redox couples at similar to 0.0 and similar to 0.5 V vs SCE, respectively, in DMF-0.1 M (Bu4N)-N-n](ClO4). A Cu(II)-based weak d-d band near 600 nm and a relatively strong ferrocenyl band at similar to 450 nm were observed in DMF-Tris-HCl buffer (1:4 v/v). The complexes bind to calf thymus DNA, exhibit moderate chemical nuclease activity forming (OH)-O-center dot radical species, and are efficient photocleavers of pUC19 DNA in visible light of 454, 568, and 647 rim, forming (OH)-O-center dot radical as the reactive oxygen species. They are cytotoxic in HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells, showing an enhancement of cytotoxicity upon visible light irradiation. Significant change in the nuclear morphology of the HeLa cells was observed with 3 in visible light compared to the nonirradiated sample. Confocal imaging using 4 showed its nuclear localization within the HeLa cells.
Resumo:
Divalent metal complexes of general formula M(2-nb)(2)(mc)(2)].2(2-nbH), where M = Co(II), Ni(II), Cu(II) or Zn(II), 2-nbH = 2-nitrobenzoic acid and mc = methyl carbazate (NH2NHCOOCH3), have been prepared and characterized by physicochemical and spectroscopic methods. Single-crystal X-ray study of the Cu(II) complex revealed that the molecule is centrosymmetric, with two N,O-chelating mc ligands in equatorial positions and a pair of monodentate 2-nb anions in the axial positions. The lattice 2-nbH molecules help to establish the packing of monomers through hydrogen-bonding interactions. Thermal stability and reactivity of the complexes were studied by TG-DTA. Emission studies show that these complexes are fluorescent.
Resumo:
New ternary copper (II) complexes, Cu(L-orn)(B)(Cl)](Cl center dot 2H(2)O) (1-2) where L-orn is L-ornithine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1) and 1,10-phenanthroline (phen, 2), were synthesized and characterized by various spectroscopic techniques. Complex 2 is characterized by the X-ray single crystallographic method. The complex shows a distorted square-pyramidal (4 + 1) CuN3OCl coordination sphere. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. Complex 2 shows appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA). The complexes were subjected to in vitro cytotoxicity studies against carcinomic human alveolar basal epithelial cells (A-549) and human epithelial (HEp-2) cells. The IC50 values of 1 and 2 are less than that of cisplatin against HEp-2 cell lines. MIC values for 1 against the bacterial strains Streptococcus mutans and Pseudomonas aeruginosa are 0.5 mM. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present investigation, a Schiff base N'(1),N'(3)-bis(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-d icarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant K-b of 2.6 x 10(4) M-1, 5.7 x 10(4) M-1 and 4.5 x 10(4) M-1, respectively and they exhibited potent photo-damage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Four dinuclear bis(mu-Cl) bridged copper(II) complexes, Cu-2(mu-Cl)(2)(L-X)(2)](ClO4)(2) (L-X = N,N-bis(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L-X ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH2) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu-t-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.
Resumo:
Ternary copper(II) complex Cu(a-lipo)(phen)(Cl)](NO3) where a-lipo = a-lipoic acid, phen is N, N-donor heterocyclic base, 1,10-phenanthroline was synthesized, characterized, and its DNA binding and cleavage activity were studied. Binding interactions of the complex with calf thymus (CT) DNA has been investigated by emission, viscosity, and DNA melting studies. The complex shows efficient oxidative cleavage of SC-DNA in the presence of 3-mercaptopropionic acid involving hydroxyl radical species, and results of control experiments exhibit the inhibition of DNA cleavage in the presence of hydroxyl radical scavengers, viz. DMSO and KI.
Resumo:
Oximato bridged dinuclear copper(II) complex Cu(L)(CH3OH)](2)(ClO4)(2) with an oxime-Schiff base ligand, viz. 3-2-(dimethylamino)ethyl]imino]-2-butanoneoxime (HL), has been synthesized and structurally characterized. The dinuclear copper(II) complex crystallizes in monoclinic space group P2(1)/n with the unit cell parameters, a = 13.3564(9) angstrom, b = 12.0821(8) angstrom, c = 17.5045(11) angstrom, beta = 90.097, V = 2824.8(3) angstrom(3), Z = 4, R = 0.0769. The complex shows quasi-reversible cyclic voltammetric response at 0.844V (Delta E-p = 276 mV) at 100 mVs(-1). The binding studies of the complex with calf thymus DNA has been investigated using absorption spectrophotometry. Cleavage activity of the complex has been carried out on double stranded pBR 322 plasmid DNA by using gel electrophoresis experiments in the absence and in the presence of the oxidant, viz., H2O2.
Resumo:
Copper(II) complexes of ferrocene(Fc)-conjugated reduced Schiff base of L-tyrosine (Fc-TyrH), viz., Cu(Fc-Tyr)(L)](ClO4), where L is 1,10-phenanthroline (phen, 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq, 2), dipyrido3,2-a:2',3'-c]phenazine (dppz, 3) and 2-(naphthalen-1-yl)-1H-imidazo4,5-f]1,10]phenanthroline (nip, 4), were prepared and tested for their photocytotoxicity in cancer cells. Cu(Fc-Phe)(phen)](-ClO4) (5) of L-phenylalanine and Cu(Ph-Tyr)(L)(ClO4)] of the reduced Schiff base Ph-TyrH derived from benzaldehyde and L-tyrosine having phen (6) and dppz (7), and Cu(Ph-Phe)(phen)(ClO4)] (8) using L-phenylalanine were prepared and used as controls. Complexes 5 and 6 were structurally characterized by X-ray crystallography. A copper(II)-based d-d band near 600 nm and a ferrocenyl band at similar to 450 nm were observed in DMF-Tris-HCI buffer (1:4 v/v) in respective complexes. The complexes are photocleavers of pUC19 DNA in visible light forming (OH)-O-center dot radicals. They are cytotoxic in HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells showing an enhancement of cytotoxicity in visible light. Fluorescence imaging shows nuclear localization of the complexes.
Resumo:
Copper(II) complexes Cu(Fc-aa)(cur)] (1-3) of curcumin (Hcur) and N-ferrocenylmethyl-L-amino acids (Fc-aa), viz., ferrocenylmethyl-L-tyrosine (Fc-TyrH), ferrocenylmethyl-L-tryptophan (Fc-TrpH) and ferrocenylmethyl-L-methionine (Fc-MetH), were prepared and characterized. The DNA photocleavage activity, photocytotoxicity and cellular localization in HeLa and MCF-7 cancer cells of these complexes were studied. Acetylacetonate (acac) complexes Cu(Fc-aa)(acac)] (4-6) were prepared and used as controls. The chemical nuclease inactive complexes showed efficient pUC19 DNA cleavage activity in visible light. Complexes 1-3 showed high photocytotoxicity with low dark toxicity thus giving remarkable photodynamic effect. FACScan analysis showed apoptosis of the cancer cells. Fluorescence microscopic studies revealed primarily cytosolic localization of the complexes. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.
Resumo:
Four binuclear copper (II) complexes Cu(oxpn)Cu(B)](2+) (2-5) bridged by N, N'-bis3-(methylamino) propyl] oxamide (oxpn), where, B is N, N-donor heterocyclic bases (viz. 2,2'-bipyridine (bpy, 2), 1,10-phenathroline (phen, 3), dipyrido3,2-d:2',3'-f]quinoxaline (dpq, 4) and dipyrido3,2-a:2',3'-c]phenazine (dppz, 5) are synthesized, characterized by different spectroscopic and single crystal X-ray data technique. The phen (3) and dpq (4) complexes were structurally characterized by X-ray data analysis. Their DNA binding, oxidative cleavage and antibactirial activities were studied. The dpq (4) and dppz (5) complexes are avid binders to the Calf thymus DNA (CT-DNA). The phen (3), dpq (4) and dppz (5) complexes show efficient oxidative cleavage of supercoiled DNA (SC DNA) through hydroxyl radical ((OH)-O-center dot) pathway in the presence of Mercaptopropionic acid (MPA). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Mono- and trinuclear copper(II) complexes with 2-1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL) have been synthesized and structurally characterized. The mononuclear complex Cu(L)(H2O)(ONO2)] (1) crystallizes in monoclinic space group P2(1) /n with a square pyramidal Cu(II) center coordinated by the tridentate Schiff base (L) and a water ligand in the equatorial plane and an oxygen atom from nitrate in the axial position. The trinuclear complex (CuL)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (2) crystallizes in hexagonal space group P6(3); all three copper atoms are five-coordinate with square pyramidal geometries. The interactions of these complexes with calf-thymus DNA have been investigated using absorption spectrophotometry. The mononuclear complex binds more strongly than the trinuclear complex. The DNA cleavage activity of these complexes has been studied on double-stranded pBR 322 plasmid DNA by gel electrophoresis experiments in the absence and in the presence of added oxidant (H2O2). The trinuclear complex cleaves DNA more efficiently than the mononuclear complex in the presence of H2O2.
Resumo:
Ferrocene-conjugated copper(II) complexes Cu(Fc-aa)(aip)](ClO4) (1-3) and (Cu(Fc-aa)(pyip)](ClO4) (4-6) of L-amino acid reduced Schiff bases (Fc-aa), 2-(9-anthryl)-1H-imidazo4,5-f]1,10]phenanthroline (aip) and 2-(1-pyrenyl)-1H-imidazo4,5-f] 1,10]phenanthroline (pyip), where Fc-aa is ferrocenylmethyl-L-tyrosine (Fc-Tyr in 1, 4), ferrocenylmethyl-L-tryptophan (Fc-Trp in 2, 5) and ferrocenylmethyl-L-methionine (Fc-Met in 3, 6), were prepared and characterized, and their photocytotoxicity was studied (Fc = ferrocenyl moiety). Phenyl analogues, viz. (Cu(Ph-Met)(aip)](ClO4) (7) and (Cu(Ph-Met)(pyip)](ClO4) (8), were prepared and used as control compounds. The bis-imidazophenanthroline copper(II) complexes, viz. (Cu(aip)(2)(NO3)](NO3) (9) and Cu(pyip)(2)(NO3)](NO3) (10), were also prepared and used as controls. Complexes 1-6 having a redox inactive cooper(II) center showed the Fc(+)-Fc redox couple at similar to 0.5 V vs. SCE in DMF-0.1 mol (Bu4N)-N-n](ClO4). The copper(II)-based d-d band was observed near 600 nm in DMF-Tris-HCl buffer (1 :1 v/v). The ferrocenyl complexes showed low dark toxicity, but remarkably high photocytotoxicity in human cervical HeLa and human breast adenocarcinoma MCF-7 cancer cells giving an excellent photo-dynamic effect while their phenyl analogues were inactive. The photo-exposure caused significant morphological changes in the cancer cells when compared to the non-irradiated ones. The photophysical processes were rationalized from the theoretical studies. Fluorescence microscopic images showed 3 and 6 localizing predominantly in the endoplasmic reticulum (ER) of the cancer cells, thus minimizing any undesirable effects involving nuclear DNA.
Resumo:
A novel colorimetric probe 1 based on the picolyl moiety has been designed and synthesized. Probe 1 is composed of a pyrene and a bispicolyl amine (BPA) unit, in which the BPA moiety acts as a binding unit and the binding phenomenon is sensed from the changes in the signaling subunit. The probe detects Cu2+ specifically in water and both Cu2+ and Hg2+ efficiently in neutral Brij-58 micellar media. The probe shows a color change visible to the naked eye upon addition of metal ions. Notably, in a micellar medium, probe 1 can detect both the Cu2+ and Hg2+ ions even at parts-per-billion levels. Furthermore, the probe shows ratiometric detection of both the metal ions making the sensing quantitative. The two metal ions could be discriminated both visibly under a UV lamp and with the use of fluorescence spectroscopy. The probe could be also used in biological cell lines for the detection of both Hg2+ and Cu2+ ions.