836 resultados para Controlled drug delivery systems
Resumo:
Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.
Resumo:
Novel microstructured and pH sensitive poly(acryliac acid-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) (P(AA-co-HEMA)/PVA) interpenetrating network (IPN) hydrogel films were prepared by radical precipitation copolymerization and sequential IPN technology. The first P(AA-co-HEMA) network was synthesized in the present of IPN aqueous solution by radical initiating, then followed by condensation reaction (Glutaraldehyde as crosslinking agent) within the resultant latex, it formed multiple IPN microstructured hydrogel film. The film samples were characterized by IR, SEM and DSC. Swelling and deswelling behaviors and mechanical property showed the novel multiple IPN nanostuctured film had rapid response and good mechanical property. The IPN films were studied as controlled drug delivery material in different pH buffer solution using cationic compound, crystal violet as a model drug.
Resumo:
Osteoarthritis (OA) is a degenerative joint disease that can result in joint pain, loss of joint function, and deleterious effects on activity levels and lifestyle habits. Current therapies for OA are largely aimed at symptomatic relief and may have limited effects on the underlying cascade of joint degradation. Local drug delivery strategies may provide for the development of more successful OA treatment outcomes that have potential to reduce local joint inflammation, reduce joint destruction, offer pain relief, and restore patient activity levels and joint function. As increasing interest turns toward intra-articular drug delivery routes, parallel interest has emerged in evaluating drug biodistribution, safety, and efficacy in preclinical models. Rodent models provide major advantages for the development of drug delivery strategies, chiefly because of lower cost, successful replication of human OA-like characteristics, rapid disease development, and small joint volumes that enable use of lower total drug amounts during protocol development. These models, however, also offer the potential to investigate the therapeutic effects of local drug therapy on animal behavior, including pain sensitivity thresholds and locomotion characteristics. Herein, we describe a translational paradigm for the evaluation of an intra-articular drug delivery strategy in a rat OA model. This model, a rat interleukin-1beta overexpression model, offers the ability to evaluate anti-interleukin-1 therapeutics for drug biodistribution, activity, and safety as well as the therapeutic relief of disease symptoms. Once the action against interleukin-1 is confirmed in vivo, the newly developed anti-inflammatory drug can be evaluated for evidence of disease-modifying effects in more complex preclinical models.
Resumo:
Conducting polypyrrole is a biological compatible polymer matrix wherein number of drugs and enzymes can be incorporated by way of doping. The polypyrrole, which is obtained as freestanding film by electrochemical polymerization, has gained tremendous recognition as sophisticated electronic measuring device in the field of sensors and drug delivery. In drug delivery the reversing of the potential 100% of the drug can be released and is highly efficient as a biosensor in presence of an enzyme. In this review we discuss the applications of conducting polypyrrole as biosensor for some biomolecules and drug delivery systems.
Resumo:
This investigation describes the formulation and characterization of theologically structured vehicles (RSVs) designed for improved drug delivery to the vagina. Interactive, multicomponent, polymeric platforms were manufactured containing hydroxyethylcellulose (HEC, 5% w/w) polyvinylpyrrolidone (PVP, 4% w/w), Pluronic (PL, 0 or 10% w/w), and either polycarbophil (PC, 3% w/w) or poly(methylvinylether-co-maleic anhydride) (Gantrez S97, 3% w/w) as a mucoadhesive agent. The rheological (torsional and dynamic), mechanical (compressional), and mucoadhesive properties were characterized and shown to be dependent upon the mucoadhesive agent used and the inclusion/exclusion of PL. The dynamic theological properties of the gel platforms were also assessed following dilution with simulated vaginal fluid (to mimic in vivo dilution). RSVs containing PC were more rheologically structured than comparator formulations containing GAN. This trend was also reflected in formulation hardness, compressibility, consistency, and syringeability. Moreover, formulations containing PL (10% w/w) were more theologically structured than formulations devoid of PL. Dilution with simulated vaginal fluids significantly decreased rheological structure, although RSVs still retained a highly elastic stnicture (G' > G '' and tan delta <1). Furthermore, RSVs exhibited sustained drug release properties that were shown to be dependent upon their rheological structure. It is considered that these semisolid drug delivery systems may be useful as site-retentive platforms for the sustained delivery of therapeutic agents to the vagina.
Resumo:
Colloidal nanoparticle drug delivery systems have attracted much interest for their ability to enable effective formulation and delivery of therapeutic agents. The selective delivery of these nanoparticles to the disease site can be enhanced by coating the surface of the nanoparticles with targeting moieties, such as antibodies. In this current work, we demonstrate that antibodies on the surface of the particles can also elicit key biological effects. Specifically, we demonstrate the induction of apoptosis in colorectal HCT116 cancer cells using PLGA nanoparticles coated with Conatumumab (AMG 655) death receptor 5-specific antibodies (DR5-NP). We show that DR5-NP preferentially target DR5-expressing cells and present a sufficient density of antibody paratopes to induce apoptosis via DR5, unlike free AMG 655 or non-targeted control nanoparticles. We also demonstrate that DR5-targeted nanoparticles encapsulating the cytotoxic drug camptothecin are effectively targeted to the tumour cells, thereby producing enhanced cytotoxic effects through simultaneous drug delivery and apoptosis induction. These results demonstrate that antibodies on nanoparticulate surfaces can be exploited for dual modes of action to enhance the therapeutic utility of the modality. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
No bioadhesive patch-based system is currently marketed. This is despite an extensive number of literature reports on such systems detailing their advantages over conventional pressure sensitive adhesive-based patches in wet environments and describing successful delivery of a diverse array of drug substances. This lack of proprietary bioadhesive patches is largely due to the fact that such systems are exclusively water-based, meaning drying is difficult. In this paper we describe, for the first time, a novel multiple lamination method for production of bioadhesive patches. In contrast to patches produced using a conventional casting approach, which took 48 hours to dry, bioadhesive films prepared using the novel multiple lamination method were dried in 15?min and were folded into formed patches in a further 10?min. Patches prepared by both methods had comparable physicochemical properties. The multiple lamination method allowed supersaturation of 5-aminolevulinic acid to be achieved in formed patch matrices. However, drug release studies were unable to show an advantage for supersaturation with this particular drug, due to its water high solubility. The multiple lamination method allowed greater than 90% of incorporated nicotine to remain within formed patches, in contrast to the 48% achieved for patches prepared using a conventional casting approach. The procedure described here could readily be adapted for automation by industry. Due to the reduced time, energy and ensuing finance now required, this could lead to bioadhesive patch-based drug delivery systems becoming commercially viable. This would, in turn, mean that pathological conditions occurring in wet or moist areas of the body could now be routinely treated by prolonged site-specific drug delivery, as mediated by a commercially produced bioadhesive patch.
Resumo:
Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of a new ophthalmic dosage forms with the existing drugs to improve efficacy and bioavailability including better patients' compliance and convenience has become trend in the most pharmaceutical industries. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization, recent researches carried out. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye also covered in this review.
Resumo:
The early eighties saw the introduction of liposomes as skin drug delivery systems, initially promoted primarily for localised effects with minimal systemic delivery. Subsequently, a novel ultradeformable vesicular system (termed "Transfersomes" by the inventors) was reported for transdermal delivery with an efficiency similar to subcutaneous injection. Further research illustrated that the mechanisms of liposome action depended on the application regime and the vesicle composition and morphology. Ethical, health and supply problems with human skin have encouraged researchers to use skin models. 'IYaditional models involved polymer membranes and animal tissue, but whilst of value for release studies, such models are not always good mimics for the complex human skin barrier, particularly with respect to the stratum corneal intercellular lipid domains. These lipids have a multiply bilayered organization, a composition and organization somewhat similar to liposomes, Consequently researchers have used vesicles as skin model membranes. Early work first employed phospholipid liposomes and tested their interactions with skin penetration enhancers, typically using thermal analysis and spectroscopic analyses. Another approach probed how incorporation of compounds into liposomes led to the loss of entrapped markers, analogous to "fluidization" of stratum corneum lipids on treatment with a penetration enhancer. Subsequently scientists employed liposomes formulated with skin lipids in these types of studies. Following a brief description of the nature of the skin barrier to transdermal drug delivery and the use of liposomes in drug delivery through skin, this article critically reviews the relevance of using different types of vesicles as a model for human skin in permeation enhancement studies, concentrating primarily on liposomes after briefly surveying older models. The validity of different types of liposome is considered and traditional skin models are compared to vesicular model membranes for their precision and accuracy as skin membrane mimics. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
To achieve effective drug concentration at the intended site for a sufficient period of time is a requisite desired for many drug formulations. For drugs intended to ocular delivery, its poor bioavailability is due to pre-corneal factors. Most ocular diseases are treated by topical drug application in the form of solution, suspension and ointment. However, such dosage forms are no longer sufficient to combat some ocular diseases. Intravitreal drug injection is the current therapy for disorders in posterior segment. The procedure is associated with a high risk of complications, particularly when frequent, repeated injections are required. Thus, sustained-release technologies are being proposed, and the benefits of using colloidal carriers in intravitreal injections are currently under investigation for posterior drug delivery. This review will discuss recent progress and specific development issues relating to colloidal drug delivery systems, such as liposomes, niosomes, nanoparticles, and microemulsions in ocular drug delivery.
Resumo:
Drug delivery systems based on natural polysaccharides, such as chitosan (CS) and pectin (PC), rather than on synthetic polymers, have been widely studied. Some reasons for that are low toxicity and costs and high biodegradability of the formers. A multiparticulate system based on CS and PC was developed in our laboratories, including the addition of an enteric polymer, cellulose acetate phtalate (CAP). Such improvement promoted stronger gastric and enteric resistances, as assessed in vitro, making the systems more selective to enzymatic degradation in the colon. Although in vitro dissolution tests can simulate some properties concerning the gastrointestinal transit (GT), collaborating to characterize the systems behavior in the biological fluids, frequently they do not result in satisfactory in vitro/in vivo correlations. The objective of this work was to follow in vivo the GT of the particles developed by means of AC biosusceptometry (ACB), a non-invasive and of low cost methodology. The particles containing ferrite in powder form were prepared by complex coacervation using an ideal 3:1:1 mass ratio for PC:CS:CAP. The magnetic particles were administered to healthy volunteers by oral route. The GT was monitored by using multi-sensor ACB system and the signal acquisition was performed every IS min until the colonic region was reached. By means of ACB technique, it was possible to acquiring images generated by the magnetic particles within the whole gastrointestinal tract including the colonic region. Variable particles transit times were observed among the volunteers, but without interference on the mapping of the particles until the colonic region. The particles were able to produce magnetic field strong enough to generate signals adequate for mapping the particles. The results suggest that integral particles reached the colon, after they resisted against gastric and enteric media. Studies associating transit time and in vivo drug release are in development in order to confirm the efficiency of the systems.
Resumo:
Conventionally, pharmaceutical substances are administered orally because the gastrointestinal tract possesses the appropriate features for drug absorption. Nevertheless, the gastrointestinal tract physiology is complex and influenced by many factors. These factors must be completely understood for the optimization of oral drug delivery systems. Although in vitro tests provide information about release and drug absorption profiles, in vivo studies are essential, due to the biological variability. Several techniques have been employed in an attempt to conveniently characterize the behavior of solid dosage forms in vivo. The noninvasive biomagnetic technique of alternate current biosusceptometry (ACB) has been used in studies focusing on gastrointestinal motility and, more recently, to evaluate the performance of magnetic dosage forms. This article will discuss the main characteristics of AC biosusceptometry and its applicability for determination of the relationship between the human gastrointestinal tract and orally administered pharmaceutical dosage forms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The use of the nasal route for drug delivery has attracted much interest in recent years in the pharmaceutical field. Local and principally systemic drug delivery can be achieved by this route of administration. But the nasal route of delivery is not applicable to all drugs. Polar drugs and some macromolecules are not absorbed in sufficient concentration due to poor membrane permeability, rapid clearance and enzymatic degradation into the nasal cavity. Thus, alternative means that help overcome these nasal barriers are currently in development. Absorption enhancers such as phospholipids and surfactants are constantly used, but care must be taken in relation to their concentration. Drug delivery systems including liposomes, cyclodextrins, micro- and nanoparticles are being investigated to increase the bioavailability of drugs delivered intranasally. This review article discusses recent progress and specific development issues relating to colloidal drug delivery systems in nasal drug delivery. © 2006 Bentham Science Publishers Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)