997 resultados para Continuous spin particle
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
We consider effective interactions among excited spin-1/2 and spin-3/2 leptons with the usual ones. Assuming that these new leptons are lighter than the Z0, we study the constraints on their masses and compositeness scale coming from the leptonic Z0 partial width.
Resumo:
We discuss a relativistic free particle with fractional spin in 2+1 dimensions, where the dual spin components satisfy the canonical angular momentum algebra {Sμ, Sν} = εμνγSγ. It is shown that it is a general consequence of these features that the Poincaré invariance is broken down to the Lorentz one, so indicating that it is not possible to keep simultaneously the free nature of the anyon and the translational invariance.
Resumo:
A forward dispersion calculation is implemented for the spin polarizabilities γ1, ⋯, γ4 of the proton and the neutron. These polarizabilities are related to the spin structure of the nucleon at low energies and are structure-constants of the Compton scattering amplitude at script O sign(ω3). In the absence of a direct experimental measurement of these quantities, a dispersion calculation serves the purpose of constraining the model building, and of comparing with recent calculations in heavy baryon chiral perturbation theory. © 1998 Elsevier Science B.V.
Resumo:
We show that a hadron gas model with continuous particle emission instead of freeze-out may solve some of the problems (high values of the freeze-out density and specific net charge) that one encounters in the latter case when studying strange particle ratios such as those from the experiment WA85. This underlines the necessity to understand better particle emission in hydrodynamics to be able to analyze data. It also reopens the possibility of a quark-hadron transition occurring with phase equilibrium instead of explosively.
Resumo:
We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.
Resumo:
The effect of the continuous emission hypothesis on the two-pion Bose-Einstein correlation function is discussed and compared with the corresponding results based on the usual freeze-out. Sizable differences in the correlation function appear in these different descriptions of the decoupling process. This means that, when extracting properties of the hot matter formed in high-energy heavy-ion collisions from the data, completely different conclusions may be reached according to the description of the particle emission process adopted.
Resumo:
Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well ν 2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations. © 2006 American Institute of Physics.
Resumo:
We propose a SUSY variant of the action for a massless spinning particles via the inclusion of twistor variables. The action is constructed to be invariant under SUSY transformations and τ-reparametrizations even when an interaction field is including. The constraint analysis is achieved and the equations of motion are derived. The commutation relations obtained for the commuting spinor variables λα show that the particle states have fractional statistics and spin. At once we introduce a possible massive term for the non-interacting model. © SISSA 2006.
Resumo:
We compute the analytical solutions of the generalized relativistic harmonic oscillator in 1+1 dimensions, including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs These are the conditions in which pseudospin or spin symmetries can be realized We consider positive and negative quadratic potentials and present their bound-state solutions for fermions and an-tifermions. We relate the spin-type and pseudospin-type spectra through charge conjugation and γ5 chiral transformations. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with tensor interactions and discuss the conditions in which one may have both nucleon and antin-ucleon bound states.
Resumo:
We show that the conditions which originate the spin and pseudospin symmetries in the Dirac equation are the same that produce equivalent energy spectra of relativistic spin-1/2 and spin-0 particles in the presence of vector and scalar potentials. The conclusions do not depend on the particular shapes of the potentials and can be important in different fields of physics. When both scalar and vector potentials are spherical, these conditions for isospectrality imply that the spin-orbit and Darwin terms of either the upper component or the lower component of the Dirac spinor vanish, making it equivalent, as far as energy is concerned, to a spin-0 state. In this case, besides energy, a scalar particle will also have the same orbital angular momentum as the (conserved) orbital angular momentum of either the upper or lower component of the corresponding spin-1/2 particle. We point out a few possible applications of this result. © 2007 The American Physical Society.