996 resultados para Containing Peptide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence-labeled soluble major histocompatibility complex class I-peptide "tetramers" constitute a powerful tool to detect and isolate antigen-specific CD8(+) T cells by flow cytometry. Conventional "tetramers" are prepared by refolding of heavy and light chains with a specific peptide, enzymatic biotinylation at an added C-terminal biotinylation sequence, and "tetramerization" by reaction with phycoerythrin- or allophycocyanin-labeled avidin derivatives. We show here that such preparations are heterogeneous and describe a new procedure that allows the preparation of homogeneous tetra- or octameric major histocompatibility complex-peptide complexes. These compounds were tested on T1 cytotoxic T lymphocytes (CTLs), which recognize the Plasmodium berghei circumsporzoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid on Lys(259) in the context of H-2K(d). We report that mutation of the CD8 binding site of K(d) greatly impairs the binding of tetrameric but not octameric or multimeric K(d)-PbCS(ABA) complexes to CTLs. This mutation abolishes the ability of the octamer to elicit significant phosphorylation of CD3, intracellular calcium mobilization, and CTL degranulation. Remarkably, however, this octamer efficiently activates CTLs for Fas (CD95)-dependent apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Present combination antiretroviral therapy (cART) alone does not cure HIV infection and requires lifelong drug treatment. The potential role of HIV therapeutic vaccines as part of an HIV cure is under consideration. Our aim was to assess the efficacy, safety, and immunogenicity of Vacc-4x, a peptide-based HIV-1 therapeutic vaccine targeting conserved domains on p24(Gag), in adults infected with HIV-1. METHODS: Between July, 2008, and June, 2010, we did a multinational double-blind, randomised, phase 2 study comparing Vacc-4x with placebo. Participants were adults infected with HIV-1 who were aged 18-55 years and virologically suppressed on cART (viral load <50 copies per mL) with CD4 cell counts of 400 × 10(6) cells per L or greater. The trial was done at 18 sites in Germany, Italy, Spain, the UK, and the USA. Participants were randomly assigned (2:1) to Vacc-4x or placebo. Group allocation was masked from participants and investigators. Four primary immunisations, weekly for 4 weeks, containing Vacc-4x (or placebo) were given intradermally after administration of adjuvant. Booster immunisations were given at weeks 16 and 18. At week 28, cART was interrupted for up to 24 weeks. The coprimary endpoints were cART resumption and changes in CD4 counts during treatment interruption. Analyses were by modified intention to treat: all participants who received one intervention. Furthermore, safety, viral load, and immunogenicity (as measured by ELISPOT and proliferation assays) were assessed. The 52 week follow-up period was completed in June, 2011. For the coprimary endpoints the proportion of participants who met the criteria for cART resumption was analysed with a logistic regression model with the treatment effect being assessed in a model including country as a covariate. This study is registered with ClinicalTrials.gov, number NCT00659789. FINDINGS: 174 individuals were screened; because of slow recruitment, enrolment stopped with 136 of a planned 345 participants and 93 were randomly assigned to receive Vacc-4x and 43 to receive placebo. There were no differences between the two groups for the primary efficacy endpoints in those participants who stopped cART at week 28. Of the participants who resumed cART, 30 (34%) were in the Vacc-4x group and 11 (29%) in the placebo group, and percentage changes in CD4 counts were not significant (mean treatment difference -5·71, 95% CI -13·01 to 1·59). However, a significant difference in viral load was noted for the Vacc-4x group both at week 48 (median 23 100 copies per mL Vacc-4x vs 71 800 copies per mL placebo; p=0·025) and week 52 (median 19 550 copies per mL vs 51 000 copies per mL; p=0·041). One serious adverse event, exacerbation of multiple sclerosis, was reported as possibly related to study treatment. Vacc-4x was immunogenic, inducing proliferative responses in both CD4 and CD8 T-cell populations. INTERPRETATION: The proportion of participants resuming cART before end of study and change in CD4 counts during the treatment interruption showed no benefit of vaccination. Vacc-4x was safe, well tolerated, immunogenic, seemed to contribute to a viral-load setpoint reduction after cART interruption, and might be worth consideration in future HIV-cure investigative strategies. FUNDING: Norwegian Research Council GLOBVAC Program and Bionor Pharma ASA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isolation of subsets of Ag-specific T cells for in vitro and in vivo studies by FACS is compromised by the fact that the soluble MHC-peptide complexes and Abs used for staining, especially when combined, induce unwanted T cell activation and eventually apoptosis. This is especially a problem for CD8+ CTL, which are susceptible to activation-dependent cell death. In this study, we show that reversible MHC-peptide complexes (tetramers) can be prepared by conjugating MHC-peptide monomers with desthiobiotin (DTB; also called dethiobiotin) and multimerization by reaction with fluorescent streptavidin. While in the cold these reagents are stable and allow good staining, they rapidly dissociate in monomers at elevated temperatures, especially in the presence of free biotin. FACS cloning of Melan-A (MART-1)-specific CTL from a melanoma-infiltrated lymph node with reversible HLA-A2 Melan-A26-35 multimers yielded over two times more clones than when using the conventional biotin-containing multimers. CTL clones obtained by means of reversible multimers killed Melan-A-positive tumor cells more efficiently as compared with clones obtained with the stable multimers. Among the CTL obtained with the reversible multimers, but much less among those obtained with the stable multimers, a high proportion of clones exhibited high functional and physical avidity and died upon incubation with soluble MHC-peptide complexes. Finally, we show that Fab' of an anti-CD8 Ab can be converted in reversible DTB streptavidin conjugates the same way. These DTB reagents efficiently and reversibly stained murine and human CTL without affecting their viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To elucidate the structural basis of T cell recognition of hapten-modified antigenic peptides, we studied the interaction of the T1 T cell antigen receptor (TCR) with its ligand, the H-2Kd-bound Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid (ABA) on P. berghei circumsporozoite Lys259. The photoaffinity-labeled TCR residue(s) were mapped as Tyr48 and/or Tyr50 of complementary determining region 2beta (CDR2beta). Other TCR-ligand contacts were identified by mutational analysis. Molecular modeling, based on crystallographic coordinates of closely related TCR and major histocompatibility complex I molecules, indicated that ABA binds strongly and specifically in a cavity between CDR3alpha and CDR2beta. We conclude that TCR expressing selective Vbeta and CDR3alpha sequences form a binding domain between CDR3alpha and CDR2beta that can accommodate nonpeptidic moieties conjugated at the C-terminal portion of peptides binding to major histocompatibility complex (MHC) encoded proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD8+ cytotoxic T lymphocyte (CTL) can recognize and kill target cells that express only a few cognate major histocompatibility complex class I-peptide (pMHC) complexes. To better understand the molecular basis of this sensitive recognition process, we studied dimeric pMHC complexes containing linkers of different lengths. Although dimers containing short (10-30-A) linkers efficiently bound to and triggered intracellular calcium mobilization and phosphorylation in cloned CTL, dimers containing long linkers (&gt; or = 80 A) did not. Based on this and on fluorescence resonance energy transfer experiments, we describe a dimeric binding mode in which two T cell receptors engage in an anti-parallel fashion two pMHC complexes facing each other with their constant domains. This binding mode allows integration of diverse low affinity interactions, which increases the overall binding and, hence, the sensitivity of antigen recognition. In proof of this, we demonstrated that pMHC dimers containing one agonist and one null ligand efficiently activate CTL, corroborating the importance of endogenous pMHC complexes in antigen recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein is described the synthesis of several analogs of the natural product IB-01211 from concatenated azoles, via a biomimetic pathway based on cyclization-oxidation of serine containing peptides combined with the Hantzsch synthesis. The macrocyclization of rigid peptide compounds 1 and 2 to give IB-01211 and its epimer 12b was explored, and the results are compared here to those previously obtained for the macrocyclization of more flexible structures in the syntheses of YM-216391, telomestatin, and IB-01211. Lastly, the preliminary results of anti-tumor activity screening of the synthesized analogs are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) play a major role in innate immunity. Penaeidins are a family of AMPs that appear to be expressed in all penaeid shrimps. Penaeidins are composed of an N-terminal proline-rich domain, followed by a C-terminal domain containing six cysteine residues organized in two doublets. This study reports the first penaeidin AMP sequence, Fi-penaeidin (GenBank accession number HM243617) from the Indian white shrimp, Fenneropenaeus indicus. The full length cDNA consists of 186 base pairs encoding 61 amino acidswith an ORF of 42 amino acids and contains a putative signal peptide of 19 amino acids. Comparison of F. indicus penaeidin (Fi-penaeidin) with other known penaeidins showed that it shared maximum similarity with penaeidins of Farfantepenaeus paulensis and Farfantepenaeus subtilis (96% each). Fi-penaeidin has a predicted molecular weight (MW) of 4.478 kDa and theoretical isoelectric point (pI) of 5.3

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2) and is known to bind to HLA-DR beta 1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of V beta 12 and V beta 6 TCR gene families in 67% of HLA-DR beta 1*0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DR beta 1*0401-HA peptide-HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of a terminally protected tripeptide Boc-Leu-Aib-beta-Ala-OMe 1 containing non-coded amino acids reveals that it adopts a beta-turn structure, which sell-assembles to form a supramolecular beta-sheet via non-covalent interactions. The SEM image of peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2002 Elsevier Science Ltd. All rights reserved.