980 resultados para Conjugate gradient methods.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The content of this paper is based on the research work while the author took part in the key project of NSFC and the key project of Knowledge Innovation of CAS. The whole paper is expanded by introduction of the inevitable boundary problem during seismic migration and inversion. Boundary problem is a popular issue in seismic data processing. At the presence of artificial boundary, reflected wave which does not exist in reality comes to presence when the incident seismic wave arrives at the artificial boundary. That will interfere the propagation of seismic wave and cause alias information on the processed profile. Furthermore, the quality of the whole seismic profile will decrease and the subsequent work will fail.This paper has also made a review on the development of seismic migration, expatiated temporary seismic migration status and predicted the possible break through. Aiming at the absorbing boundary problem in migration, we have deduced the wide angle absorbing boundary condition and made a compare with the boundary effect of Toepiitz matrix fast approximate computation.During the process of fast approximate inversion computation of Toepiitz system, we have introduced the pre-conditioned conjugate gradient method employing co circulant extension to construct pre-conditioned matrix. Especially, employment of combined preconditioner will reduce the boundary effect during computation.Comparing the boundary problem in seismic migration with that in Toepiitz matrix inversion we find that the change of boundary condition will lead to the change of coefficient matrix eigenvalues and the change of coefficient matrix eigenvalues will cause boundary effect. In this paper, the author has made an qualitative analysis of the relationship between the coefficient matrix eigenvalues and the boundary effect. Quantitative analysis is worthy of further research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A learning based framework is proposed for estimating human body pose from a single image. Given a differentiable function that maps from pose space to image feature space, the goal is to invert the process: estimate the pose given only image features. The inversion is an ill-posed problem as the inverse mapping is a one to many process. Hence multiple solutions exist, and it is desirable to restrict the solution space to a smaller subset of feasible solutions. For example, not all human body poses are feasible due to anthropometric constraints. Since the space of feasible solutions may not admit a closed form description, the proposed framework seeks to exploit machine learning techniques to learn an approximation that is smoothly parameterized over such a space. One such technique is Gaussian Process Latent Variable Modelling. Scaled conjugate gradient is then used find the best matching pose in the space of feasible solutions when given an input image. The formulation allows easy incorporation of various constraints, e.g. temporal consistency and anthropometric constraints. The performance of the proposed approach is evaluated in the task of upper-body pose estimation from silhouettes and compared with the Specialized Mapping Architecture. The estimation accuracy of the Specialized Mapping Architecture is at least one standard deviation worse than the proposed approach in the experiments with synthetic data. In experiments with real video of humans performing gestures, the proposed approach produces qualitatively better estimation results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The parallelization of existing/industrial electromagnetic software using the bulk synchronous parallel (BSP) computation model is presented. The software employs the finite element method with a preconditioned conjugate gradient-type solution for the resulting linear systems of equations. A geometric mesh-partitioning approach is applied within the BSP framework for the assembly and solution phases of the finite element computation. This is combined with a nongeometric, data-driven parallel quadrature procedure for the evaluation of right-hand-side terms in applications involving coil fields. A similar parallel decomposition is applied to the parallel calculation of electron beam trajectories required for the design of tube devices. The BSP parallelization approach adopted is fully portable, conceptually simple, and cost-effective, and it can be applied to a wide range of finite element applications not necessarily related to electromagnetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a dynamic distributed load balancing algorithm for parallel, adaptive Finite Element simulations in which we use preconditioned Conjugate Gradient solvers based on domain-decomposition. The load balancing is designed to maintain good partition aspect ratio and we show that cut size is not always the appropriate measure in load balancing. Furthermore, we attempt to answer the question why the aspect ratio of partitions plays an important role for certain solvers. We define and rate different kinds of aspect ratio and present a new center-based partitioning method of calculating the initial distribution which implicitly optimizes this measure. During the adaptive simulation, the load balancer calculates a balancing flow using different versions of the diffusion algorithm and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. Experimental results for Bramble's preconditioner and comparisons to state-of-the-art load balancers show the benefits of the construction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new linear equations method for calculating the R-matrix, which arises in the R-matrix-Floquet theory of multiphoton processes, is introduced. This method replaces the diagonalization of the Floquet Hamiltonian matrix by the solution of a set of linear simultaneous equations which are solved, in the present work, by the conjugate gradient method. This approach uses considerably less computer memory and can be readily ported onto parallel computers. It will thus enable much larger problems of current interest to be treated. This new method is tested by applying it to three-photon ionization of helium at frequencies where double resonances with a bound state and autoionizing states are important. Finally, an alternative linear equations method, which avoids the explicit calculation of the R-matrix by incorporating the boundary conditions directly, is described in an appendix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The end of Dennard scaling has pushed power consumption into a first order concern for current systems, on par with performance. As a result, near-threshold voltage computing (NTVC) has been proposed as a potential means to tackle the limited cooling capacity of CMOS technology. Hardware operating in NTV consumes significantly less power, at the cost of lower frequency, and thus reduced performance, as well as increased error rates. In this paper, we investigate if a low-power systems-on-chip, consisting of ARM's asymmetric big.LITTLE technology, can be an alternative to conventional high performance multicore processors in terms of power/energy in an unreliable scenario. For our study, we use the Conjugate Gradient solver, an algorithm representative of the computations performed by a large range of scientific and engineering codes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the complexity of computing systems grows, reliability and energy are two crucial challenges asking for holistic solutions. In this paper, we investigate the interplay among concurrency, power dissipation, energy consumption and voltage-frequency scaling for a key numerical kernel for the solution of sparse linear systems. Concretely, we leverage a task-parallel implementation of the Conjugate Gradient method, equipped with an state-of-the-art pre-conditioner embedded in the ILUPACK software, and target a low-power multi core processor from ARM.In addition, we perform a theoretical analysis on the impact of a technique like Near Threshold Voltage Computing (NTVC) from the points of view of increased hardware concurrency and error rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimization of wave functions in quantum Monte Carlo is a difficult task because the statistical uncertainty inherent to the technique makes the absolute determination of the global minimum difficult. To optimize these wave functions we generate a large number of possible minima using many independently generated Monte Carlo ensembles and perform a conjugate gradient optimization. Then we construct histograms of the resulting nominally optimal parameter sets and "filter" them to identify which parameter sets "go together" to generate a local minimum. We follow with correlated-sampling verification runs to find the global minimum. We illustrate this technique for variance and variational energy optimization for a variety of wave functions for small systellls. For such optimized wave functions we calculate the variational energy and variance as well as various non-differential properties. The optimizations are either on par with or superior to determinations in the literature. Furthermore, we show that this technique is sufficiently robust that for molecules one may determine the optimal geometry at tIle same time as one optimizes the variational energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quasi-Newton-Raphson minimization and conjugate gradient minimization have been used to solve the crystal structures of famotidine form B and capsaicin from X-ray powder diffraction data and characterize the chi(2) agreement surfaces. One million quasi-Newton-Raphson minimizations found the famotidine global minimum with a frequency of ca 1 in 5000 and the capsaicin global minimum with a frequency of ca 1 in 10 000. These results, which are corroborated by conjugate gradient minimization, demonstrate the existence of numerous pathways from some of the highest points on these chi(2) agreement surfaces to the respective global minima, which are passable using only downhill moves. This important observation has significant ramifications for the development of improved structure determination algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The speed of convergence while training is an important consideration in the use of neural nets. The authors outline a new training algorithm which reduces both the number of iterations and training time required for convergence of multilayer perceptrons, compared to standard back-propagation and conjugate gradient descent algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for intelligent monitoring systems has become a necessity to keep track of the complex forex market. The vast currency market is a foreign concept to the average individual. However, once it is broken down into simple terms, the average individual can begin to understand the foreign exchange market and use it as a financial instrument for future investing. We attempt to compare the performance of a Takagi-Sugeno, type neuro-fuzzy system and a feedforward neural network trained using the scaled conjugate gradient algorithm to predict the average monthly forex rates. We considered the exchange values of Australian dollar with respect to US dollar, Singapore dollar, New Zealand dollar, Japanese yen and United Kingdom pounds. The connectionist models were trained using 70% of the data and remaining was used for testing and validation purposes. It is observed that the proposed connectionist models were able to predict the average forex rates one month ahead accurately. Experiment results also reveal that the neuro-fuzzy technique performed better than the neural network