982 resultados para Concurrency control algorithms
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Current computer systems have evolved from featuring only a single processing unit and limited RAM, in the order of kilobytes or few megabytes, to include several multicore processors, o↵ering in the order of several tens of concurrent execution contexts, and have main memory in the order of several tens to hundreds of gigabytes. This allows to keep all data of many applications in the main memory, leading to the development of inmemory databases. Compared to disk-backed databases, in-memory databases (IMDBs) are expected to provide better performance by incurring in less I/O overhead. In this dissertation, we present a scalability study of two general purpose IMDBs on multicore systems. The results show that current general purpose IMDBs do not scale on multicores, due to contention among threads running concurrent transactions. In this work, we explore di↵erent direction to overcome the scalability issues of IMDBs in multicores, while enforcing strong isolation semantics. First, we present a solution that requires no modification to either database systems or to the applications, called MacroDB. MacroDB replicates the database among several engines, using a master-slave replication scheme, where update transactions execute on the master, while read-only transactions execute on slaves. This reduces contention, allowing MacroDB to o↵er scalable performance under read-only workloads, while updateintensive workloads su↵er from performance loss, when compared to the standalone engine. Second, we delve into the database engine and identify the concurrency control mechanism used by the storage sub-component as a scalability bottleneck. We then propose a new locking scheme that allows the removal of such mechanisms from the storage sub-component. This modification o↵ers performance improvement under all workloads, when compared to the standalone engine, while scalability is limited to read-only workloads. Next we addressed the scalability limitations for update-intensive workloads, and propose the reduction of locking granularity from the table level to the attribute level. This further improved performance for intensive and moderate update workloads, at a slight cost for read-only workloads. Scalability is limited to intensive-read and read-only workloads. Finally, we investigate the impact applications have on the performance of database systems, by studying how operation order inside transactions influences the database performance. We then propose a Read before Write (RbW) interaction pattern, under which transaction perform all read operations before executing write operations. The RbW pattern allowed TPC-C to achieve scalable performance on our modified engine for all workloads. Additionally, the RbW pattern allowed our modified engine to achieve scalable performance on multicores, almost up to the total number of cores, while enforcing strong isolation.
Resumo:
This paper presents an on-board bidirectional battery charger for Electric Vehicles (EVs), which operates in three different modes: Grid-to- Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H). Through these three operation modes, using bidirectional communications based on Information and Communication Technologies (ICT), it will be possible to exchange data between the EV driver and the future smart grids. This collaboration with the smart grids will strengthen the collective awareness systems, contributing to solve and organize issues related with energy resources and power grids. This paper presents the preliminary studies that results from a PhD work related with bidirectional battery chargers for EVs. Thus, in this paper is described the topology of the on-board bidirectional battery charger and the control algorithms for the three operation modes. To validate the topology it was developed a laboratory prototype, and were obtained experimental results for the three operation modes.
Resumo:
This paper proposes an on-board Electric Vehicle (EV) battery charger with enhanced Vehicle-to-Home (V2H) operation mode. For such purpose was adapted an on-board bidirectional battery charger prototype to allow the Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G) and V2H operation modes. Along the paper are presented the hardware topology and the control algorithms of this battery charger. The idea underlying to this paper is the operation of the on-board bidirectional battery charger as an energy backup system when occurs a power outages. For detecting the power outage were compared two strategies, one based on the half-cycle rms calculation of the power grid voltage, and another in the determination of the rms value based in a Kalman filter. The experimental results were obtained considering the on-board EV battery charger under the G2V, V2G, and V2H operation modes. The results show that the power outage detection is faster using a Kalman filter, up to 90% than the other strategy. This also enables a faster transition between operation modes when a power outage occurs.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies
Resumo:
This paper presents the development of na on-board bidirectional battery charger for Electric Vehicles (EVs) targeting Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H) technologies. During the G2V operation mode the batteries are charged from the power grid with sinusoidal current and unitary power factor. During the V2G operation mode the energy stored in the batteries can be delivered back to the power grid contributing to the power system stability. In the V2H operation mode the energy stored in the batteries can be used to supply home loads during power outages, or to supply loads in places without connection to the power grid. Along the paper the hardware topology of the bidirectional battery charger is presented and the control algorithms are explained. Some considerations about the sizing of the AC side passive filter are taken into account in order to improve the performance in the three operation modes. The adopted topology and control algorithms are accessed through computer simulations and validated by experimental results achieved with a developed laboratory prototype operating in the different scenarios.
Resumo:
This paper proposes a single-phase reconfigurable battery charger for Electric Vehicle (EV) that operates in three different modes: Grid-to-Vehicle (G2V) mode, in which the traction batteries are charged from the power grid; Vehicle-to-Grid (V2G) mode, in which the traction batteries deliver part of the stored energy back to the power grid; and in Traction-to-Auxiliary (T2A) mode, in which the auxiliary battery is charged from the traction batteries. When connected to the power grid, the battery charger works with sinusoidal current in the AC side, for both G2V and V2G modes, and also regulates the reactive power. When the EV is disconnected from the power grid, the control algorithms are modified and the full-bridge AC-DC bidirectional converter works as a full-bridge isolated DC-DC converter that is used to charge the auxiliary battery of the EV, avoiding the use of an additional charger to accomplish this task. To assess the behavior of the proposed reconfigurable battery charger under different operation scenarios, a 3.6 kW laboratory prototype has been developed and experimental results are presented.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
Due to the high cost of a large ATM network working up to full strength to apply our ideas about network management, i.e., dynamic virtual path (VP) management and fault restoration, we developed a distributed simulation platform for performing our experiments. This platform also had to be capable of other sorts of tests, such as connection admission control (CAC) algorithms, routing algorithms, and accounting and charging methods. The platform was posed as a very simple, event-oriented and scalable simulation. The main goal was the simulation of a working ATM backbone network with a potentially large number of nodes (hundreds). As research into control algorithms and low-level, or rather cell-level methods, was beyond the scope of this study, the simulation took place at a connection level, i.e., there was no real traffic of cells. The simulated network behaved like a real network accepting and rejecting SNMP ones, or experimental tools using the API node
Resumo:
El projecte tracta de la fabricació d’un robot mòbil que sigui capaç de realitzar el mapeig d’una superfície, evitant els obstacles que es pugui trobar en el transcurs del seu recorregut. És un projecte complex, per aquest motiu la part de procés de dades s'ha fet en un projecte posterior. Aquesta memòria tracta del muntatge i calibració dels components, a més de la realització dels algorismes de control dels mateixos, per tal de realitzar el mapeig de la superfície, aconseguint així l’objectiu plantejat.
Resumo:
Diplomityössä on kehitetty kaksitasoisen jännitevälipiirillisen taajuusmuuttajan häviöiden simulointiin käytettävä simulointimalli osaksi säädettävän sähkömoottorikäytön simulointityökalua, jolla voidaan analysoida eri säätöalgoritmien, kuormituksen ja kytkentätaajuuden vaikutusta taajuusmuuttajan häviöihin. Aluksi on selvitetty yksityiskohtaisesti taajuusmuuttajan häviölähteet ja häviöiden fysikaalinen tausta. Taajuusmuuttajassa käytettäville komponenteille on esitetty simulointimalleja. Taajuusmuuttajan malli ja häviöiden laskenta-algoritmit on toteutettu C-kielellä. Taajuusmuuttajan malli vastaa perusrakenteeltaan ACS800-02-0260-5 - taajuusmuuttajaa. ACS800-02-0260-5 -taajuusmuuttajan häviöitä on simuloitu erilaisissa kuormitustilanteissa, ja simulointien tueksi taajuusmuuttajan häviöt on pyritty selvittämään laboratoriomittauksin.
Resumo:
Taajuudenmuuttajan kytkennän synnyttämä nopea jännitemuutos aiheuttaa pitkään moottorikaapeliin sähköisen värähtelyilmiön. Ilmiö on tullut erityisesti esille uusien nopeasti kytkevien puolijohdetehokytkimien ilmestyttyä markkinoille. Taajuudenmuuttajan lähtöön asennettu jännitteen nousunopeutta rajoittava suodin vähentää kaapelivärähtelyä, mutta riittävän pitkässä kaapelissa värähtely on voimakasta lähtösuotimesta huolimatta. Kaapelivärähtelyilmiön seurauksena moottorikaapelin taajuudenmuuttajan puoleiseen päähän syntyy voimakas virtavärähtely ja moottorin puoleiseen päähän voimakas jännitevärähtely. Sähkökäyttöjen vektorisäätöalgoritmit tekevät ohjauspäätöksiä moottorikaapelin taajuudenmuuttajan päästä tehtyjen virtamittausten perusteella. Säädön päätösväli on niin lyhyt, että kaapelin virtavärähtely ehtii häiritä säädön toimintaa. Tässä työssä on esitetty kaapelivärähtelyä kuvaava taajuudenmuuttajan lähtösuotimen huomioon ottava siirtofunktioperustainen matemaattinen malli. Mallin avulla kaapelivärähtelyilmiötä voi analysoida lineaarisen säätöteorian menetelmillä. Virtavärähtelyn moottorisäätöön tuomiin ongelmiin ratkaisuksi on esitetty virran mittasignaalin käsittelemistä analogisella ja digitaalisella suotimella. Simulointitulosten perusteella ratkaisua voidaan pitää toimivana. Lopuksi esitetään, kuinka avaruusvektoriteorian mukaista induktiomoottorimallia ja kaapelivärähtelymallia voidaan simuloida yhdessä.
Resumo:
The activated sludge process - the main biological technology usually applied towastewater treatment plants (WWTP) - directly depends on live beings (microorganisms), and therefore on unforeseen changes produced by them. It could be possible to get a good plant operation if the supervisory control system is able to react to the changes and deviations in the system and can take thenecessary actions to restore the system’s performance. These decisions are oftenbased both on physical, chemical, microbiological principles (suitable to bemodelled by conventional control algorithms) and on some knowledge (suitable to be modelled by knowledge-based systems). But one of the key problems in knowledge-based control systems design is the development of an architecture able to manage efficiently the different elements of the process (integrated architecture), to learn from previous cases (spec@c experimental knowledge) and to acquire the domain knowledge (general expert knowledge). These problems increase when the process belongs to an ill-structured domain and is composed of several complex operational units. Therefore, an integrated and distributed AIarchitecture seems to be a good choice. This paper proposes an integrated and distributed supervisory multi-level architecture for the supervision of WWTP, that overcomes some of the main troubles of classical control techniques and those of knowledge-based systems applied to real world systems
Resumo:
The amount of installed wind power has been growing exponentially during the past ten years. As wind turbines have become a significant source of electrical energy, the interactions between the turbines and the electric power network need to be studied more thoroughly than before. Especially, the behavior of the turbines in fault situations is of prime importance; simply disconnecting all wind turbines from the network during a voltage drop is no longer acceptable, since this would contribute to a total network collapse. These requirements have been a contributor to the increased role of simulations in the study and design of the electric drive train of a wind turbine. When planning a wind power investment, the selection of the site and the turbine are crucial for the economic feasibility of the installation. Economic feasibility, on the other hand, is the factor that determines whether or not investment in wind power will continue, contributing to green electricity production and reduction of emissions. In the selection of the installation site and the turbine (siting and site matching), the properties of the electric drive train of the planned turbine have so far been generally not been taken into account. Additionally, although the loss minimization of some of the individual components of the drive train has been studied, the drive train as a whole has received less attention. Furthermore, as a wind turbine will typically operate at a power level lower than the nominal most of the time, efficiency analysis in the nominal operating point is not sufficient. This doctoral dissertation attempts to combine the two aforementioned areas of interest by studying the applicability of time domain simulations in the analysis of the economicfeasibility of a wind turbine. The utilization of a general-purpose time domain simulator, otherwise applied to the study of network interactions and control systems, in the economic analysis of the wind energy conversion system is studied. The main benefits of the simulation-based method over traditional methods based on analytic calculation of losses include the ability to reuse and recombine existing models, the ability to analyze interactions between the components and subsystems in the electric drive train (something which is impossible when considering different subsystems as independent blocks, as is commonly done in theanalytical calculation of efficiencies), the ability to analyze in a rather straightforward manner the effect of selections other than physical components, for example control algorithms, and the ability to verify assumptions of the effects of a particular design change on the efficiency of the whole system. Based on the work, it can be concluded that differences between two configurations can be seen in the economic performance with only minor modifications to the simulation models used in the network interaction and control method study. This eliminates the need ofdeveloping analytic expressions for losses and enables the study of the system as a whole instead of modeling it as series connection of independent blocks with no lossinterdependencies. Three example cases (site matching, component selection, control principle selection) are provided to illustrate the usage of the approach and analyze its performance.