927 resultados para Computer-assisted image processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Computer assisted cognitive remediation (CACR) was demonstrated to be efficient in improving cognitive deficits in adults with psychosis. However, scarce studies explored the outcome of CACR in adolescents with psychosis or at high risk. Aims: To investigate the effectiveness of a computer-assisted cognitive remediation (CACR) program in adolescents with psychosis or at high risk. Method: Intention to treat analyses included 32 adolescents who participated in a blinded 8-week randomized controlled trial of CACR treatment compared to computer games (CG). Cognitive abilities, symptoms and psychosocial functioning were assessed at baseline and posttreatment. Results: Improvement in visuospatial abilities was significantly greater in the CACR group than in CG. Other cognitive functions, psychotic symptoms and psychosocial functioning improved significantly, but at similar rates, in the two groups. Conclusion: CACR can be successfully administered in this population; it proved to be effective over and above CG for the most intensively trained cognitive ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Validation is the main bottleneck preventing theadoption of many medical image processing algorithms inthe clinical practice. In the classical approach,a-posteriori analysis is performed based on someobjective metrics. In this work, a different approachbased on Petri Nets (PN) is proposed. The basic ideaconsists in predicting the accuracy that will result froma given processing based on the characterization of thesources of inaccuracy of the system. Here we propose aproof of concept in the scenario of a diffusion imaginganalysis pipeline. A PN is built after the detection ofthe possible sources of inaccuracy. By integrating thefirst qualitative insights based on the PN withquantitative measures, it is possible to optimize the PNitself, to predict the inaccuracy of the system in adifferent setting. Results show that the proposed modelprovides a good prediction performance and suggests theoptimal processing approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diplomityössä on käsitelty paperin pinnankarkeuden mittausta, joka on keskeisimpiä ongelmia paperimateriaalien tutkimuksessa. Paperiteollisuudessa käytettävät mittausmenetelmät sisältävät monia haittapuolia kuten esimerkiksi epätarkkuus ja yhteensopimattomuus sileiden papereiden mittauksissa, sekä suuret vaatimukset laboratorio-olosuhteille ja menetelmien hitaus. Työssä on tutkittu optiseen sirontaan perustuvia menetelmiä pinnankarkeuden määrittämisessä. Konenäköä ja kuvan-käsittelytekniikoita tutkittiin karkeilla paperipinnoilla. Tutkimuksessa käytetyt algoritmit on tehty Matlab® ohjelmalle. Saadut tulokset osoittavat mahdollisuuden pinnankarkeuden mittaamiseen kuvauksen avulla. Parhaimman tuloksen perinteisen ja kuvausmenetelmän välillä antoi fraktaaliulottuvuuteen perustuva menetelmä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The present study evaluates the reliability of the Radio Memory® software (Radio Memory; Belo Horizonte,Brasil.) on classifying lower third molars, analyzing intra- and interexaminer agreement of the results. Study Design: An observational, descriptive study of 280 lower third molars was made. The corresponding orthopantomographs were analyzed by two examiners using the Radio Memory® software. The exam was repeated 30 days after the first observation by each examiner. Both intra- and interexaminer agreement were determined using the SPSS v 12.0 software package for Windows (SPSS; Chicago, USA). Results: Intra- and interexaminer agreement was shown for both the Pell & Gregory and the Winter classifications, p<0.01, with 99% significant correlation between variables in all the cases. Conclusions: The use of Radio Memory® software for the classification of lower third molars is shown to be a valid alternative to the conventional method (direct evaluation on the orthopantomograph), for both clinical and investigational applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forensic intelligence has recently gathered increasing attention as a potential expansion of forensic science that may contribute in a wider policing and security context. Whilst the new avenue is certainly promising, relatively few attempts to incorporate models, methods and techniques into practical projects are reported. This work reports a practical application of a generalised and transversal framework for developing forensic intelligence processes referred to here as the Transversal model adapted from previous work. Visual features present in the images of four datasets of false identity documents were systematically profiled and compared using image processing for the detection of a series of modus operandi (M.O.) actions. The nature of these series and their relation to the notion of common source was evaluated with respect to alternative known information and inferences drawn regarding respective crime systems. 439 documents seized by police and border guard authorities across 10 jurisdictions in Switzerland with known and unknown source level links formed the datasets for this study. Training sets were developed based on both known source level data, and visually supported relationships. Performance was evaluated through the use of intra-variability and inter-variability scores drawn from over 48,000 comparisons. The optimised method exhibited significant sensitivity combined with strong specificity and demonstrates its ability to support forensic intelligence efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is oftenassociated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcificationsis performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcificationshave been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the senseof adding new features not only related to the shape

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms