901 resultados para Computer Network Resources
Resumo:
This paper focuses on QoS routing with protection in an MPLS network over an optical layer. In this multi-layer scenario each layer deploys its own fault management methods. A partially protected optical layer is proposed and the rest of the network is protected at the MPLS layer. New protection schemes that avoid protection duplications are proposed. Moreover, this paper also introduces a new traffic classification based on the level of reliability. The failure impact is evaluated in terms of recovery time depending on the traffic class. The proposed schemes also include a novel variation of minimum interference routing and shared segment backup computation. A complete set of experiments proves that the proposed schemes are more efficient as compared to the previous ones, in terms of resources used to protect the network, failure impact and the request rejection ratio
Resumo:
A recent study defines a new network plane: the knowledge plane. The incorporation of the knowledge plane over the network allows having more accurate information of the current and future network states. In this paper, the introduction and management of the network reliability information in the knowledge plane is proposed in order to improve the quality of service with protection routing algorithms in GMPLS over WDM networks. Different experiments prove the efficiency and scalability of the proposed scheme in terms of the percentage of resources used to protect the network
Resumo:
Internal and external computer network attacks or security threats occur according to standards and follow a set of subsequent steps, allowing to establish profiles or patterns. This well-known behavior is the basis of signature analysis intrusion detection systems. This work presents a new attack signature model to be applied on network-based intrusion detection systems engines. The AISF (ACME! Intrusion Signature Format) model is built upon XML technology and works on intrusion signatures handling and analysis, from storage to manipulation. Using this new model, the process of storing and analyzing information about intrusion signatures for further use by an IDS become a less difficult and standardized process.
Resumo:
Recently, considerable research work have been conducted towards finding fast and accurate pattern classifiers for training Intrusion Detection Systems (IDSs). This paper proposes using the so called Fuzzy ARTMAT classifier to detect intrusions in computer network. Our investigation shows, through simulations, how efficient such a classifier can be when used as the learning mechanism of a typical IDS. The promising evaluation results in terms of both detection accuracy and training duration indicate that the Fuzzy ARTMAP is indeed viable for this sort of application.
Resumo:
Pós-graduação em Comunicação - FAAC
Resumo:
A capacidade de processamento das instituições de pesquisa vem crescendo significativamente à medida que processadores e estações de trabalho cada vez mais poderosos vão surgindo no mercado. Considerando a melhoria de desempenho na área de redes de computadores e visando suprir a demanda por processamento cada vez maior, surgiu a ideia de utilizar computadores independentes conectados em rede como plataforma para execução de aplicações paralelas, originando assim a área de computação em grade. Em uma rede que se encontra sob um mesmo domínio administrativo, é comum que exista o compartilhamento de recursos como discos, impressoras, etc. Mas quando a rede ultrapassa um domínio administrativo, este compartilhamento se torna muito limitado. A finalidade das grades de computação é permitir compartilhamento de recursos mesmo que estes estejam espalhados por diversos domínios administrativos. Esta dissertação propõe uma arquitetura para o estabelecimento dinâmico de conexões multidomínio que faz uso da comutação de rajadas ópticas (OBS – Optical Burst Switching) utilizando um plano de controle GMPLS (Generalized Multiprotocol Label Switching). A arquitetura baseia-se no armazenamento de informações sobre recursos de grade de sistemas autônomos (AS -Autonomous Systems) distintos em um componente chamado Servidor GOBS Raiz (Grid OBS) e na utilização do roteamento explícito para reservar os recursos ao longo de uma rota que satisfaça as restrições de desempenho de uma aplicação. A validação da proposta é feita através de simulações que mostram que a arquitetura é capaz de garantir níveis de desempenho diferenciados de acordo com a classe da aplicação e proporciona uma melhor utilização dos recursos de rede e de computação.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risklink- group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
Wireless LAN technology, despite the numerous advantages it has over competing technologies, has not seen widespread deployment. A primary reason for markets not adopting this technology is its failure to provide adequate security. Data that is sent over wireless links can be compromised with utmost ease. In this project, we propose a distributed agent based intrusion detection and response system for wireless LANs that can detect unauthorized wireless elements like access points, wireless clients that are in promiscuous mode etc. The system reacts to intrusions by either notifying the concerned personnel, in case of rogue access points and promiscuous nodes, or by blocking unauthorized users from accessing the network resources.
Resumo:
Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength division multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated protection and shared protection schemes are considered. Given the network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures such as fiber cut and duct cut, we consider the general shared risk link group (SRLG) diverse routing constraints. We first resort to the integer linear programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA) and tabu search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu search method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
We propose an efficient scheduling scheme that optimizes advance-reserved lightpath services in reconfigurable WDM networks. A re-optimization approach is devised to reallocate network resources for dynamic service demands while keeping determined schedule unchanged.
Resumo:
Over the past several years, a number of design approaches in wireless mesh networks have been introduced to support the deployment of wireless mesh networks (WMNs). We introduce a novel wireless mesh architecture that supports authentication and authorisation functionalities, giving the possibility of a seamless WMN integration into the home's organization authentication and authorisation infrastructure. First, we introduce a novel authentication and authorisation mechanism for wireless mesh nodes. The mechanism is designed upon an existing federated access control approach, i.e. the AAI infrastructure that is using just the credentials at the user's home organization in a federation. Second, we demonstrate how authentication and authorisation for end users is implemented by using an existing web-based captive portal approach. Finally, we observe the difference between the two and explain in detail the process flow of authorized access to network resources in wireless mesh networks. The goal of our wireless mesh architecture is to enable easy broadband network access to researchers at remote locations, giving them additional advantage of a secure access to their measurements, irrespective of their location. It also provides an important basis for the real-life deployment of wireless mesh networks for the support of environmental research.
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Resumo:
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.