968 resultados para Computed tomography, image quality, dose reduction, iterative reconstruction, model observer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: To evaluate the effect of a modified abdominal multislice computed tomography (CT) protocol for obese patients on image quality and radiation dose. MATERIALS AND METHODS: An adult female anthropomorphic phantom was used to simulate obese patients by adding one or two 4-cm circumferential layers of fat-equivalent material to the abdominal portion. The phantom was scanned with a subcutaneous fat thickness of 0, 4, and 8 cm using the following parameters (detector configuration/beam pitch/table feed per rotation/gantry rotation time/kV/mA): standard protocol A: 16 x 0.625 mm/1.75/17.5 mm/0.5 seconds/140/380, and modified protocol B: 16 x 1.25 mm/1.375/27.5 mm/1.0 seconds/140/380. Radiation doses to six abdominal organs and the skin, image noise values, and contrast-to-noise ratios (CNRs) were analyzed. Statistical analysis included analysis of variance, Wilcoxon rank sum, and Student's t-test (P < .05). RESULTS: Applying the modified protocol B with one or two fat rings, the image noise decreased significantly (P < .05), and simultaneously, the CNR increased significantly compared with protocol A (P < .05). Organ doses significantly increased, up to 54.7%, comparing modified protocol B with one fat ring to the routine protocol A with no fat rings (P < .05). However, no significant change in organ dose was seen for protocol B with two fat rings compared with protocol A without fat rings (range -2.1% to 8.1%) (P > .05). CONCLUSIONS: Using a modified abdominal multislice CT protocol for obese patients with 8 cm or more of subcutaneous fat, image quality can be substantially improved without a significant increase in radiation dose to the abdominal organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this retrospective study was to intra-individually compare the image quality of computed radiography (CR) and low-dose linear-slit digital radiography (LSDR) for supine chest radiographs. A total of 90 patients (28 female, 62 male; mean age, 55.1 years) imaged with CR and LSDR within a mean time interval of 2.8 days +/- 3.0 were included in this study. Two independent readers evaluated the image quality of CR and LSDR based on modified European Guidelines for Quality Criteria for chest X-ray. The Wilcoxon test was used to analyse differences between the techniques. The overall image quality of LSDR was significantly better than the quality of CR (9.75 vs 8.16 of a maximum score of 10; p < 0.001). LSDR performed significantly better than CR for delineation of anatomical structures in the mediastinum and the retrocardiac lung (p < 0.001). CR was superior to LSDR for visually sharp delineation of the lung vessels and the thin linear structures in the lungs. We conclude that LSDR yields better image quality and may be more suitable for excluding significant pathological features of the chest in areas with high attenuation compared with CR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess the potential of monoenergetic computed tomography (CT) images to reduce beam hardening artifacts in comparison to standard CT images of dental restoration on dental post-mortem CT (PMCT). Thirty human decedents (15 male, 58 ± 22 years) with dental restorations were examined using standard single-energy CT (SECT) and dual-energy CT (DECT). DECT data were used to generate monoenergetic CT images, reflecting the X-ray attenuation at energy levels of 64, 69, 88 keV, and at an individually adjusted optimal energy level called OPTkeV. Artifact reduction and image quality of SECT and monoenergetic CT were assessed objectively and subjectively by two blinded readers. Subjectively, beam artifacts decreased visibly in 28/30 cases after monoenergetic CT reconstruction. Inter- and intra-reader agreement was good (k = 0.72, and k = 0.73 respectively). Beam hardening artifacts decreased significantly with increasing monoenergies (repeated-measures ANOVA p < 0.001). Artifact reduction was greatest on monoenergetic CT images at OPTkeV. Mean OPTkeV was 108 ± 17 keV. OPTkeV yielded the lowest difference between CT numbers of streak artifacts and reference tissues (-163 HU). Monoenergetic CT reconstructions significantly reduce beam hardening artifacts from dental restorations and improve image quality of post-mortem dental CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To find a threshold body weight (BW) below 100 kg above which computed tomography pulmonary angiography (CTPA) using reduced radiation and a reduced contrast material (CM) dose provides significantly impaired quality and diagnostic confidence compared with standard-dose CTPA. METHODS In this prospectively randomised study of 501 patients with suspected pulmonary embolism and BW <100 kg, 246 were allocated into the low-dose group (80 kVp, 75 ml CM) and 255 into the normal-dose group (100 kVp, 100 ml CM). Contrast-to-noise ratio (CNR) in the pulmonary trunk was calculated. Two blinded chest radiologists independently evaluated subjective image quality and diagnostic confidence. Data were compared between the normal-dose and low-dose groups in five BW subgroups. RESULTS Vessel attenuation did not differ between the normal-dose and low-dose groups within each BW subgroup (P = 1.0). The CNR was higher with the normal-dose compared with the low-dose protocol (P < 0.006) in all BW subgroups except for the 90-99 kg subgroup (P = 0.812). Subjective image quality and diagnostic confidence did not differ between CT protocols in all subgroups (P between 0.960 and 1.0). CONCLUSIONS Subjective image quality and diagnostic confidence with 80 kVp CTPA is not different from normal-dose protocol in any BW group up to 100 kg. KEY POINTS • 80 kVp CTPA is safe in patients weighing <100 kg • Reduced radiation and iodine dose still provide high vessel attenuation • Image quality and diagnostic confidence with low-dose CTPA is good • Diagnostic confidence does not deteriorate in obese patients weighing <100 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computed tomography (CT) is a valuable technology to the healthcare enterprise as evidenced by the more than 70 million CT exams performed every year. As a result, CT has become the largest contributor to population doses amongst all medical imaging modalities that utilize man-made ionizing radiation. Acknowledging the fact that ionizing radiation poses a health risk, there exists the need to strike a balance between diagnostic benefit and radiation dose. Thus, to ensure that CT scanners are optimally used in the clinic, an understanding and characterization of image quality and radiation dose are essential.

The state-of-the-art in both image quality characterization and radiation dose estimation in CT are dependent on phantom based measurements reflective of systems and protocols. For image quality characterization, measurements are performed on inserts imbedded in static phantoms and the results are ascribed to clinical CT images. However, the key objective for image quality assessment should be its quantification in clinical images; that is the only characterization of image quality that clinically matters as it is most directly related to the actual quality of clinical images. Moreover, for dose estimation, phantom based dose metrics, such as CT dose index (CTDI) and size specific dose estimates (SSDE), are measured by the scanner and referenced as an indicator for radiation exposure. However, CTDI and SSDE are surrogates for dose, rather than dose per-se.

Currently there are several software packages that track the CTDI and SSDE associated with individual CT examinations. This is primarily the result of two causes. The first is due to bureaucracies and governments pressuring clinics and hospitals to monitor the radiation exposure to individuals in our society. The second is due to the personal concerns of patients who are curious about the health risks associated with the ionizing radiation exposure they receive as a result of their diagnostic procedures.

An idea that resonates with clinical imaging physicists is that patients come to the clinic to acquire quality images so they can receive a proper diagnosis, not to be exposed to ionizing radiation. Thus, while it is important to monitor the dose to patients undergoing CT examinations, it is equally, if not more important to monitor the image quality of the clinical images generated by the CT scanners throughout the hospital.

The purposes of the work presented in this thesis are threefold: (1) to develop and validate a fully automated technique to measure spatial resolution in clinical CT images, (2) to develop and validate a fully automated technique to measure image contrast in clinical CT images, and (3) to develop a fully automated technique to estimate radiation dose (not surrogates for dose) from a variety of clinical CT protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE. The purpose of the study was to investigate patient characteristics associated with image quality and their impact on the diagnostic accuracy of MDCT for the detection of coronary artery stenosis. MATERIALS AND METHODS. Two hundred ninety-one patients with a coronary artery calcification (CAC) score of <= 600 Agatston units (214 men and 77 women; mean age, 59.3 +/- 10.0 years [SD]) were analyzed. An overall image quality score was derived using an ordinal scale. The accuracy of quantitative MDCT to detect significant (>= 50%) stenoses was assessed using quantitative coronary angiography (QCA) per patient and per vessel using a modified 19-segment model. The effect of CAC, obesity, heart rate, and heart rate variability on image quality and accuracy were evaluated by multiple logistic regression. Image quality and accuracy were further analyzed in subgroups of significant predictor variables. Diagnostic analysis was determined for image quality strata using receiver operating characteristic (ROC) curves. RESULTS. Increasing body mass index (BMI) (odds ratio [OR] = 0.89, p < 0.001), increasing heart rate (OR = 0.90, p < 0.001), and the presence of breathing artifact (OR = 4.97, p = 0.001) were associated with poorer image quality whereas sex, CAC score, and heart rate variability were not. Compared with examinations of white patients, studies of black patients had significantly poorer image quality (OR = 0.58, p = 0.04). At a vessel level, CAC score (10 Agatston units) (OR = 1.03, p = 0.012) and patient age (OR = 1.02, p = 0.04) were significantly associated with the diagnostic accuracy of quantitative MDCT compared with QCA. A trend was observed in differences in the areas under the ROC curves across image quality strata at the vessel level (p = 0.08). CONCLUSION. Image quality is significantly associated with patient ethnicity, BMI, mean scan heart rate, and the presence of breathing artifact but not with CAC score at a patient level. At a vessel level, CAC score and age were associated with reduced diagnostic accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim - A quantative primary study to determine whether increasing source to image distance (SID), with and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces dose whilst still producing an image of diagnostic quality. Methods - Using a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR) was calculated for comparison. For each acquisition, femoral head diameter was also measured for magnification indication. Results - Results demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant mAs was used. No significant statistical (T-test) difference (p = 0.967) between image quality was detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID. Conclusion - For CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without adversely affecting image quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Pelvis and hip radiography are consistently found to be amongst the highest contributors to the collective effective dose (E) in all ten DOSE DATAMED countries in Europe, representing 2.8 to 9.4% of total collective dose (S) in the TOP 20 exams list. The level of image quality should provide all the diagnostic information in order not to jeopardise the diagnosis, but being able to provide the needed clinical information with the minimum dose. A recent study suggests further research to determine whether the “10 kVp rule” would have value for a range of examinations using Computed Radiography (CR) systems. As a “rule of thumb” increasing the kVp by 10 whilst halving the mAs is suggested to give a similar perceptual image quality when compared to the original exposure factors. Aims - In light of the 10kVp rule, this study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and E for pelvis imaging using automatic exposure control (AEC) and non-AEC in a Computed Radiography (CR) system. Research questions - Does the 10kVp rule works for the pelvis in relation to image quality in a CR system? Does the image quality differs when the AEC is used instead of manual mode using the 10kVp rule and how this impacts on E?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Ramo de especialização: Terapia com Radiações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary artery disease (CAD) is currently one of the most prevalent diseases in the world population and calcium deposits in coronary arteries are one direct risk factor. These can be assessed by the calcium score (CS) application, available via a computed tomography (CT) scan, which gives an accurate indication of the development of the disease. However, the ionising radiation applied to patients is high. This study aimed to optimise the protocol acquisition in order to reduce the radiation dose and explain the flow of procedures to quantify CAD. The main differences in the clinical results, when automated or semiautomated post-processing is used, will be shown, and the epidemiology, imaging, risk factors and prognosis of the disease described. The software steps and the values that allow the risk of developingCADto be predicted will be presented. A64-row multidetector CT scan with dual source and two phantoms (pig hearts) were used to demonstrate the advantages and disadvantages of the Agatston method. The tube energy was balanced. Two measurements were obtained in each of the three experimental protocols (64, 128, 256 mAs). Considerable changes appeared between the values of CS relating to the protocol variation. The predefined standard protocol provided the lowest dose of radiation (0.43 mGy). This study found that the variation in the radiation dose between protocols, taking into consideration the dose control systems attached to the CT equipment and image quality, was not sufficient to justify changing the default protocol provided by the manufacturer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractObjective:To assess the reduction of estimated radiation dose in abdominal computed tomography following the implementation of new scan protocols on the basis of clinical suspicion and of adjusted images acquisition parameters.Materials and Methods:Retrospective and prospective review of reports on radiation dose from abdominal CT scans performed three months before (group A – 551 studies) and three months after (group B – 788 studies) implementation of new scan protocols proposed as a function of clinical indications. Also, the images acquisition parameters were adjusted to reduce the radiation dose at each scan phase. The groups were compared for mean number of acquisition phases, mean CTDIvol per phase, mean DLP per phase, and mean DLP per scan.Results:A significant reduction was observed for group B as regards all the analyzed aspects, as follows: 33.9%, 25.0%, 27.0% and 52.5%, respectively for number of acquisition phases, CTDIvol per phase, DLP per phase and DLP per scan (p < 0.001).Conclusion:The rational use of abdominal computed tomography scan phases based on the clinical suspicion in conjunction with the adjusted images acquisition parameters allows for a 50% reduction in the radiation dose from abdominal computed tomography scans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Study Design: Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO 4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. Results: At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R 2 > 0.93). However, the absolute CT numbers varied considerably with the anatomical location. Conclusion: The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To intraindividually compare a low-tube-voltage (80 kVp), high-tube-current (675 mA) computed tomographic (CT) technique with a high-tube-voltage (140 kVp) CT protocol for the detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase.