917 resultados para Computational lambda-calculus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quinoxalina e seus derivativos são uma importante classe de compostos heterocíclicos, onde os elementos N, S e O substituem átomos de carbono no anel. A fórmula molecular da quinoxalina é C8H6N2, formada por dois anéis aromáticos, benzeno e pirazina. É rara em estado natural, mas a sua síntese é de fácil execução. Modificações na estrutura da quinoxalina proporcionam uma grande variedade de compostos e actividades, tais como actividades antimicrobiana, antiparasitária, antidiabética, antiproliferativa, anti-inflamatória, anticancerígena, antiglaucoma, antidepressiva apresentando antagonismo do receptor AMPA. Estes compostos também são importantes no campo industrial devido, por exemplo, ao seu poder na inibição da corrosão do metal. A química computacional, ramo natural da química teórica é um método bem desenvolvido, utilizado para representar estruturas moleculares, simulando o seu comportamento com as equações da física quântica e clássica. Existe no mercado uma grande variedade de ferramentas informaticas utilizadas na química computacional, que permitem o cálculo de energias, geometrias, frequências vibracionais, estados de transição, vias de reação, estados excitados e uma variedade de propriedades baseadas em várias funções de onda não correlacionadas e correlacionadas. Nesta medida, a sua aplicação ao estudo das quinoxalinas é importante para a determinação das suas características químicas, permitindo uma análise mais completa, em menos tempo, e com menos custos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a survey of useful, established formulas in Fractional Calculus, systematically collected for reference purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional calculus generalizes integer order derivatives and integrals. During the last half century a considerable progress took place in this scientific area. This paper addresses the evolution and establishes an assertive measure of the research development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last fifty years the area of Fractional Calculus verified a considerable progress. This paper analyzes and measures the evolution that occurred since 1966.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an algorithm for the calculation of the root locus of fractional linear systems is presented. The proposed algorithm takes advantage of present day computational resources and processes directly the characteristic equation, avoiding the limitations revealed by standard methods. The results demonstrate the good performance for different types of expressions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advantageous use of fractional calculus (FC) in the modeling and control of many dynamical systems has been recognized. In this paper, we study the control of a heat diffusion system based on the application of the FC concepts. Several algorithms are investigated and compared, when integrated within a Smith predictor control structure. Simulations are presented assessing the performance of the proposed fractional algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This survey intends to report some of the major documents and events in the area of fractional calculus that took place since 1974 up to the present date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter considers the particle swarm optimization algorithm as a system, whose dynamics is studied from the point of view of fractional calculus. In this study some initial swarm particles are randomly changed, for the system stimulation, and its response is compared with a non-perturbed reference response. The perturbation effect in the PSO evolution is observed in the perspective of the fitness time behaviour of the best particle. The dynamics is represented through the median of a sample of experiments, while adopting the Fourier analysis for describing the phenomena. The influence upon the global dynamics is also analyzed. Two main issues are reported: the PSO dynamics when the system is subjected to random perturbations, and its modelling with fractional order transfer functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. It has been recognized the advantageous use of this mathematical tool in the modelling and control of many dynamical systems. Having these ideas in mind, this paper discusses a FC perspective in the study of the dynamics and control of several systems. The paper investigates the use of FC in the fields of controller tuning, legged robots, electrical systems and digital circuit synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.