980 resultados para Computational Identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein–ligand interactions has become extremely important to help determine a protein’s functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein–ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article discusses methods to identify plants by analysing leaf complexity based on estimating their fractal dimension. Leaves were analyzed according to the complexity of their internal and external shapes. A computational program was developed to process, analyze and extract the features of leaf images, thereby allowing for automatic plant identification. Results are presented from two experiments, the first to identify plant species from the Brazilian Atlantic forest and Brazilian Cerrado scrublands, using fifty leaf samples from ten different species, and the second to identify four different species from genus Passiflora, using twenty leaf samples for each class. A comparison is made of two methods to estimate fractal dimension (box-counting and multiscale Minkowski). The results are discussed to determine the best approach to analyze shape complexity based on the performance of the technique, when estimating fractal dimension and identifying plants. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotamine is one of four major components of the venom of the South American rattlesnake Crotalus durissus terrificus. Similar to its counterparts in the family of the myotoxins, it induces myonecrosis of skeletal muscle cells. This paper describes a new NMR structure determination of crotamine in aqueous solution at pH 5.8 and 20 degrees C, using standard homonuclear (1)H NMR spectroscopy at 900 MHz and the automated structure calculation software ATNOS/CANDID/DYANA. The automatic NOESY spectral analysis included the identification of a most likely combination of the six cysteines into three disulfide bonds, i.e. Cys4-Cys36, Cys11-Cys30 and Cys18-Cys37; thereby a generally applicable new computational protocol is introduced to determine unknown disulfide bond connectivities in globular proteins. A previous NMR structure determination was thus confirmed and the structure refined. Crotamine contains an alpha-helix with residues 1-7 and a two-stranded anti-parallel beta-sheet with residues 9-13 and 34-38 as the only regular secondary structures. These are connected with each other and the remainder of the polypeptide chain by the three disulfide bonds, which also form part of a central hydrophobic core. A single conformation was observed, with Pro13 and Pro21 in the trans and Pro20 in the cis-form. The global fold and the cysteine-pairing pattern of crotamine are similar to the beta-defensin fold, although the two proteins have low sequence homology, and display different biological activities. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. The quadrature axis parameters are obtained with a rejection under an arbitrary reference, reducing the present difficulties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. By machine modeling one can obtain the quadrature parameters through a load rejection under an arbitrary reference, reducing the present difficulties. The proposed method is applied to a real machine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification can only be achieved by experimental approaches. We used two distinct methodologies, one based on the alignment of mouse orthologous sequences to the human genome, and another based on the construction of a high-quality human testis cDNA library, in an attempt to identify new human transcripts within the human genome sequence. We generated 47 complete human transcript sequences, comprising 27 unannotated and 20 annotated sequences. Eight of these transcripts are variants of previously known genes. These transcripts were characterized according to size, number of exons, and chromosomal localization, and a search for protein domains was undertaken based on their putative open reading frames. In silico expression analysis suggests that some of these transcripts are expressed at low levels and in a restricted set of tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solved problem is a common mistake. The most popular and extensively used methods, the minutiae-based, do not perform well on poor-quality images and when just a small area of overlap between the template and the query images exists. The use of multibiometrics is considered one of the keys to overcome the weakness and improve the accuracy of biometrics systems. This paper presents the fusion of a minutiae-based and a ridge-based fingerprint recognition method at rank, decision and score level. The fusion techniques implemented leaded to a reduction of the Equal Error Rate by 31.78% (from 4.09% to 2.79%) and a decreasing of 6 positions in the rank to reach a Correct Retrieval (from rank 8 to 2) when assessed in the FVC2002-DB1A database. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.