1000 resultados para Computação


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an application of a hybrid Fuzzy-ELECTRE-TOPSIS multicriteria approach for a Cloud Computing Service selection problem. The research was exploratory, using a case of study based on the actual requirements of professionals in the field of Cloud Computing. The results were obtained by conducting an experiment aligned with a Case of Study using the distinct profile of three decision makers, for that, we used the Fuzzy-TOPSIS and Fuzzy-ELECTRE-TOPSIS methods to obtain the results and compare them. The solution includes the Fuzzy sets theory, in a way it could support inaccurate or subjective information, thus facilitating the interpretation of the decision maker judgment in the decision-making process. The results show that both methods were able to rank the alternatives from the problem as expected, but the Fuzzy-ELECTRE-TOPSIS method was able to attenuate the compensatory character existing in the Fuzzy-TOPSIS method, resulting in a different alternative ranking. The attenuation of the compensatory character stood out in a positive way at ranking the alternatives, because it prioritized more balanced alternatives than the Fuzzy-TOPSIS method, a factor that has been proven as important at the validation of the Case of Study, since for the composition of a mix of services, balanced alternatives form a more consistent mix when working with restrictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem por objetivo relatar os resultados preliminares de uma experiência de integração curricular, em andamento na Escola de Informática da UCPel, na área de fundamentos matemáticos da Ciência da Computação. A concepção curricular da experiência está baseada nas idéias de Basil Bernstein sobre currículos de coleção e/ou integração, na idéia de desenvolvimento autônomo do aluno e na organização do ensino em forma semi-presencial (com apoio da Internet) e cooperativa (com apoio de softwares matemáticos).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constante evolução da tecnologia disponibilizou, atualmente, ferramentas computacionais que eram apenas expectativas há 10 anos atrás. O aumento do potencial computacional aplicado a modelos numéricos que simulam a atmosfera permitiu ampliar o estudo de fenômenos atmosféricos, através do uso de ferramentas de computação de alto desempenho. O trabalho propôs o desenvolvimento de algoritmos com base em arquiteturas SIMT e aplicação de técnicas de paralelismo com uso da ferramenta OpenACC para processamento de dados de previsão numérica do modelo Weather Research and Forecast. Esta proposta tem forte conotação interdisciplinar, buscando a interação entre as áreas de modelagem atmosférica e computação científica. Foram testadas a influência da computação do cálculo de microfísica de nuvens na degradação temporal do modelo. Como a entrada de dados para execução na GPU não era suficientemente grande, o tempo necessário para transferir dados da CPU para a GPU foi maior do que a execução da computação na CPU. Outro fator determinante foi a adição de código CUDA dentro de um contexto MPI, causando assim condições de disputa de recursos entre os processadores, mais uma vez degradando o tempo de execução. A proposta do uso de diretivas para aplicar computação de alto desempenho em uma estrutura CUDA parece muito promissora, mas ainda precisa ser utilizada com muita cautela a fim de produzir bons resultados. A construção de um híbrido MPI + CUDA foi testada, mas os resultados não foram conclusivos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Têm-se notado nos últimos anos um crescimento na adoção de tecnologias de computação em nuvem, com uma adesão inicial por parte de particulares e pequenas empresas, e mais recentemente por grandes organizações. Esta tecnologia tem servido de base ao aparecimento de um conjunto de novas tendências, como a Internet das Coisas ligando os nossos equipamentos pessoais e wearables às redes sociais, processos de big data que permitem tipificar comportamentos de clientes ou ainda facilitar a vida ao cidadão com serviços de atendimento integrados. No entanto, tal como em todas as novas tendências disruptivas, que trazem consigo um conjunto de oportunidades, trazem também um conjunto de novos riscos que são necessários de serem equacionados. Embora este caminho praticamente se torne inevitável para uma grande parte de empresas e entidades governamentais, a sua adoção como funcionamento deve ser alvo de uma permanente avaliação e monitorização entre as vantagens e riscos associados. Para tal, é fundamental que as organizações se dotem de uma eficiente gestão do risco, de modo que possam tipificar os riscos (identificar, analisar e quantificar) e orientar-se de uma forma segura e metódica para este novo paradigma. Caso não o façam, os riscos ficam evidenciados, desde uma possível perda de competitividade face às suas congéneres, falta de confiança dos clientes, dos parceiros de negócio e podendo culminar numa total inatividade do negócio. Com esta tese de mestrado desenvolve-se uma análise genérica de risco tendo como base a Norma ISO 31000:2009 e a elaboração de uma proposta de registo de risco, que possa servir de auxiliar em processos de tomada de decisão na contratação e manutenção de serviços de Computação em Nuvem por responsáveis de organizações privadas ou estatais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work approaches the forced air cooling of strawberry by numerical simulation. The mathematical model that was used describes the process of heat transfer, based on the Fourier's law, in spherical coordinates and simplified to describe the one-dimensional process. For the resolution of the equation expressed for the mathematical model, an algorithm was developed based on the explicit scheme of the numerical method of the finite differences and implemented in the scientific computation program MATLAB 6.1. The validation of the mathematical model was made by the comparison between theoretical and experimental data, where strawberries had been cooled with forced air. The results showed to be possible the determination of the convective heat transfer coefficient by fitting the numerical and experimental data. The methodology of the numerical simulations was showed like a promising tool in the support of the decision to use or to develop equipment in the area of cooling process with forced air of spherical fruits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: