925 resultados para Compressor valve
Resumo:
This paper describes the development of a new analysis to predict the onset of flow instability for an axial compressor operating in a circumferentially distorted inlet flow. A relatively simple model is used to examine the influence of various distortions in setting this instability point. It is found that the model reproduces known experimental trends for the loss of stability margin with increasing distortion amplitude and with changes in reduced frequency.
Resumo:
This paper describes a computer code aimed at solving the equations of three dimensional viscous compressible flow in turbomachine geometries. The code is applied to the study of the flowfield in a transonic axial compressor rotor at design speed at both maximum flow and towards stall. The predicted flowfield is compared with the laser measurements and the performance of the code discussed. In addition the discussion highlights the change in the predicted endwall and tip clearance flows as the rotor operating point is moved towards stall.
Resumo:
In multi-spool engines, rotating stall in an upstream compressor will impose a rotating distortion on the downstream compressor, thereby affecting its stability margin. In this paper experiments are described in which this effect was simulated by a rotating screen upstream of several multistage low-speed compressors. The measurements are complemented by, and compared with, a theoretical model of multistage compressor response to speed and direction of rotation of an inlet distortion. For co-rotating distortions (i.e., distortions rotating in the same direction as rotor rotation), experiments show that the compressors exhibited significant loss in stability margin and that they could be divided into two groups according to their response. The first group exhibited a single peak in stall margin degradation when the distortion speed corresponded to roughly 50% of rotor speed. The second group showed two peaks in stall margin degradation corresponding to distortion speeds of approximately 25-35% and 70-75% of rotor speed. These new results demonstrate that multistage compressors can have more than a single resonant response. Detailed measurements suggest that the two types of behavior are linked to differences between the stall inception processes observed for the two groups of compressors and that a direct connection thus exists between the observed forced response and the unsteady flow phenomena at stall onset. For counter-rotational distortions, all the compressors tested showed minimal loss of stability margin. The results imply that counter-rotation of the fan and core compressor, or LP and HP compressors, could be a worthwhile design choice. Calculations based on the two-dimensional theoretical model show excellent agreement for the compressors which had a single peak for stall margin degradation. We take this first-of-a-kind comparison as showing that the model, though simplified, captures the essential fluid dynamic features of the phenomena. Agreement is not good for compressors which had two peaks in the curve of stall margin shift versus distortion rotation speed. The discrepancy is attributed to the three-dimensional and short length scale nature of the stall inception process in these machines; this includes phenomena that have not yet been addressed in any model.
Resumo:
The usual approach to compressor design considers uniform inlet flow characteristics. Especially in aircraft applications, the inlet flow is quite often non uniform, and this can result in severe performance degradation. The magnitude of this phenomenon is amplified in military engines due to the complexity of inlet duct configurations and the extreme flight conditions. CFD simulation is an innovative and powerful tool for studying inlet distortions and can bring this inside the very early phases of the design process. This project attempts to study the effects of inlet flow distortions in an axial flow compressor trying to minimize the use computer resources and computational time. The first stage of a low bypass ratio compressor has been analyzed and its clean and distorted performance compared outlining the principal changes due to uneven flow distribution: drop in mass flow, increase in pressure and temperature ratios, decrease in surge margin. Three different studies have then been conducted to better understand the effects of the level, the type and the frequency of the distortion.
Resumo:
Calculations are presented predicting the onset of flow instability for a multistage low speed axial compressor operating in circumferentially distorted inlet flow. The most important feature of the model used is that it attempts to properly account for the fluid dynamic interaction between the spoiled and unspoiled sectors of the compressor. The calculations show that there is an approximate stability criterion, the annulus averaged slope of the compressor pressure rise characteristic equal to zero, that is valid whenever the dynamics of the compressor distorted flowfield can be considered independent of the compressor environment. This approximate criterion is used to investigate the relationship between the present model and the 'parallel compressor' model. Further calculations are performed to investigate cases of interest when the dynamics of the compressor flowfield are coupled to the environment. Resonant cases and cases when the distortion is unsteady are studied.
Resumo:
The paper reports the results of a high-quality pulse source incorporating a gain-switched laser diode followed by a novel compact two-cascade fibre compression scheme. The pulse compression scheme incorporates a dispersive delay line and a nonlinear pulse compressor based on a dispersion-imbalanced fibre loop mirror (DILM). We analyse and demonstrate for the first time significant improvement of the loop performance by means of the chirped pulse switching. As a result, the DILM provides high-quality nonlinear pulse compression as well as rejection of the nonsoliton component. In the experiment, 20ps pulses from a gain switched laser diode are compressed to a duration of 300fs at a repetition rate in range 70MHz-10GHz. The pulses are pedestal free and transform-limited. Spectral filtering of the output signal by means of a bandpass filter results in generation of wavelength-tuneable picosecond pulses with a duration defined by the filter bandwidth. Alternatively, signal filtering by an arrayed waveguide grating (AWG) results in multichannel picosecond pulse generation for WDM and OTDM applications. The pulse source is built of standard components and is of compact and potentially robust design.
Resumo:
In this paper, the effects of wake/leading-edge interactions were studied at off-design conditions. Measurements were performed on the stator-blade suction surface at midspan. The leading-edge flow-field was investigated using hotwire micro-traverses, hotfilm surface shear-stress sensors and pressure micro-tappings. The trailing-edge flow-field was investigated using hotwire boundary-layer traverses. Unsteady CFD calculations were also performed to aid the interpretation of the results. At low flow coefficients, the time-averaged momentum thickness of the leading-edge boundary layer was found to rise as the flow coefficient was reduced. The time-resolved momentum-thickness rose due to the interaction of the incoming rotor wake. As the flow coefficient was reduced, the incoming wakes increased in pitch-wise extent, velocity deficit and turbulence intensity. This increased both the time-resolved rise in the momentum thickness and the turbulent spot production within the wake affected boundary-layer. Close to stall, a drop in the leading-edge momentum thickness was observed in-between wake events. This was associated with the formation of a leading-edge separation bubble in-between wake events. The wake interaction with the bubble gave rise to a shedding phenomenon, which produced large length scale disturbances in the surface shear stress. Copyright © 2008 by ASME.