926 resultados para Complex learning
Resumo:
Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: 1) provide an exercise resolution environment, and 2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.
Resumo:
The LMS plays an indisputable role in the majority of the eLearning environments. This eLearning system type is often used for presenting, solving and grading simple exercises. However, exercises from complex domains, such as computer programming, require heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. This work presents a standard approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach use a pivot component embedded in the LMS with two roles: provide an exercise resolution environment and coordinate the communication between the LMS and other systems exposing their functions as web services. The integration of the pivot component with the LMS relies on the Learning Tools Interoperability. The validation of this approach is made through the integration of the component with LMSs from two vendors.
Resumo:
In recent years emerged several initiatives promoted by educational organizations to adapt Service Oriented Architectures (SOA) to e-learning. These initiatives commonly named eLearning Frameworks share a common goal: to create flexible learning environments by integrating heterogeneous systems already available in many educational institutions. However, these frameworks were designed for integration of systems participating in business like processes rather than on complex pedagogical processes as those related to automatic evaluation. Consequently, their knowledge bases lack some fundamental components that are needed to model pedagogical processes. The objective of the research described in this paper is to study the applicability of eLearning frameworks for modelling a network of heterogeneous eLearning systems, using the automatic evaluation of programming exercises as a case study. The paper surveys the existing eLearning frameworks to justify the selection of the e-Framework. This framework is described in detail and identified the necessary components missing from its knowledge base, more precisely, a service genre, expression and usage model for an evaluation service. The extensibility of the framework is tested with the definition of this service. A concrete model for evaluation of programming exercises is presented as a validation of the proposed approach.
Resumo:
In the 21st century the majority of people live in urban settings and studies show a trend to the increase of this phenomenon. Globalisation and the concentration of multinational and clusters of firms in certain places are attracting people who seek employment and a better living. Many of those agglomerations are situated in developing countries, representing serious challenges both for public and private sectors. Programmes and initiatives in different countries are taking place and best practices are being exchanged globally. The objective is to transform these urban places into sustainable learning cities/regions where citizens can live with quality. The complexity of urban places, sometimes megacities, opened a new field of research. This paper argues that in order to understand the dynamics of such a complex phenomenon, a multidisciplinary, systemic approach is needed and the creation of learning cities and regions calls for the contribution of a multitude of fields of knowledge, ranging from economy to urbanism, educational science, sociology, environmental psychology and others.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
As e-learning gradually evolved many specialized and disparate systems appeared to fulfil the needs of teachers and students, such as repositories of learning objects, authoring tools, intelligent tutors and automatic evaluators. This heterogeneity raises interoperability issues giving the standardization of content an important role in e-learning. This article presents a survey on current e-learning content aggregation standards focusing on their internal organization and packaging. This study is part of an effort to choose the most suitable specifications and standards for an e-learning framework called Ensemble defined as a conceptual tool to organize a network of e-learning systems and services for domains with complex evaluation.
Resumo:
This paper presents a framework for a robotic production line simulation learning environment using Autonomous Ground Vehicles (AGV). An eLearning platform is used as interface with the simulator. The objective is to introduce students to the production robotics area using a familiar tool, an eLearning platform, and a framework that simulates a production line using AGVs. This framework allows students to learn about robotics but also about several areas of industrial management engineering without requiring an extensive prior knowledge on the robotics area. The robotic production line simulation learning environment simulates a production environment using AGVs to transport materials to and from the production line. The simulator allows students to validate the AGV dynamics and provides information about the whole materials supplying system which includes: supply times, route optimization and inventory management. The students are required to address several topics such as: sensors, actuators, controllers and an high level management and optimization software. This simulator was developed with a known open source tool from robotics community: Player/Stage. This tool was extended with several add-ons so that students can be able to interact with a complex simulation environment. These add-ons include an abstraction communication layer that performs events provided by the database server which is programmed by the students. An eLearning platform is used as interface between the students and the simulator. The students can visualize the effects of their instructions/programming in the simulator that they can access via the eLearning platform. The proposed framework aims to allow students from different backgrounds to fully experience robotics in practice by suppressing the huge gap between theory and practice that exists in robotics. Using an eLearning platform eliminates installation problems that can occur from different computers software distribution and makes the simulator accessible by all students at school and at home.
Resumo:
Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
Tese de Doutoramento em Tecnologias e Sistemas de Informação
Resumo:
Inductive learning aims at finding general rules that hold true in a database. Targeted learning seeks rules for the predictions of the value of a variable based on the values of others, as in the case of linear or non-parametric regression analysis. Non-targeted learning finds regularities without a specific prediction goal. We model the product of non-targeted learning as rules that state that a certain phenomenon never happens, or that certain conditions necessitate another. For all types of rules, there is a trade-off between the rule's accuracy and its simplicity. Thus rule selection can be viewed as a choice problem, among pairs of degree of accuracy and degree of complexity. However, one cannot in general tell what is the feasible set in the accuracy-complexity space. Formally, we show that finding out whether a point belongs to this set is computationally hard. In particular, in the context of linear regression, finding a small set of variables that obtain a certain value of R2 is computationally hard. Computational complexity may explain why a person is not always aware of rules that, if asked, she would find valid. This, in turn, may explain why one can change other people's minds (opinions, beliefs) without providing new information.
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
Learning and immunity are two adaptive traits with roles in central aspects of an organism's life: learning allows adjusting behaviours in changing environments, while immunity protects the body integrity against parasites and pathogens. While we know a lot about how these two traits interact in vertebrates, the interactions between learning and immunity remain poorly explored in insects. During my PhD, I studied three possible ways in which these two traits interact in the model system Drosophila melanogaster, a model organism in the study of learning and in the study of immunity. Learning can affect the behavioural defences against parasites and pathogens through the acquisition of new aversions for contaminated food for instance. This type of learning relies on the ability to associate a food-related cue with the visceral sickness following ingestion of contaminated food. Despite its potential implication in infection prevention, the existence of pathogen avoidance learning has been rarely explored in invertebrates. In a first part of my PhD, I tested whether D. melanogaster, which feed on food enriched in microorganisms, innately avoid the orally-acquired 'novel' virulent pathogen Pseudomonas entomophila, and whether it can learn to avoid it. Although flies did not innately avoid this pathogen, they decreased their preference for contaminated food over time, suggesting the existence of a form of learning based likely on infection-induced sickness. I further found that flies may be able to learn to avoid an odorant which was previously associated with the pathogen, but this requires confirmation with additional data. If this is confirmed, this would be the first time, to my knowledge, that pathogen avoidance learning is reported in an insect. The detrimental effect of infection on cognition and more specifically on learning ability is well documented in vertebrates and in social insects. While the underlying mechanisms are described in detail in vertebrates, experimental investigations are lacking in invertebrates. In a second part of my PhD, I tested the effect of an oral infection with natural pathogens on associative learning of D. melanogaster. By contrast with previous studies in insects, I found that flies orally infected with the virulent P. entomophila learned better the association of an odorant with mechanical shock than uninfected flies. The effect seems to be specific to a gut infection, and so far I have not been able to draw conclusions on the respective contributions of the pathogen's virulence and of the flies' immune activity in this effect. Interestingly, infected flies may display an increased sensitivity to physical pain. If the learning improvement observed in infected flies was due partially to the activity of the immune system, my results would suggest the existence of physiological connections between the immune system and the nervous system. The basis of these connections would then need to be addressed. Learning and immunity are linked at the physiological level in social insects. Physiological links between traits often result from the expression of genetic links between these traits. However, in social insects, there is no evidence that learning and immunity may be involved in an evolutionary trade-off. I previously reported a positive effect of infection on learning in D. melanogaster. This might suggest that a positive genetic link could exist between learning and immunity. We tested this hypothesis with two approaches: the diallel cross design with inbred lines, and the isofemale lines design. The two approaches provided consistent results: we found no additive genetic correlation between learning and resistance to infection with the diallel cross, and no genetic correlation in flies which are not yet adapted to laboratory conditions in isofemale lines. Consistently with the literature, the two studies suggested that the positive effect of infection on learning I observed might not be reflected by a positive evolutionary link between learning and immunity. Nevertheless, the existence of complex genetic relationships between the two traits cannot be excluded. - L'apprentissage et l'immunité sont deux caractères à valeur adaptative impliqués dans des aspects centraux de la vie d'un organisme : l'apprentissage permet d'ajuster les comportements pour faire face aux changements de l'environnement, tandis que l'immunité protège l'intégrité corporelle contre les attaques des parasites et des pathogènes. Alors que les interactions entre l'apprentissage et l'immunité sont bien documentées chez les vertébrés, ces interactions ont été très peu étudiées chez les insectes. Pendant ma thèse, je me suis intéressée à trois aspects des interactions possibles entre l'apprentissage et l'immunité chez la mouche du vinaigre Drosophila melanogaster, qui est un organisme modèle dans l'étude à la fois de l'apprentissage et de l'immunité. L'apprentissage peut affecter les défenses comportementales contre les parasites et les pathogènes par l'acquisition de nouvelles aversions pour la nourriture contaminée par exemple. Ce type d'apprentissage repose sur la capacité à associer une caractéristique de la nourriture avec la maladie qui suit l'ingestion de cette nourriture. Malgré les implications potentielles pour la prévention des infections, l'évitement appris des pathogènes a été rarement étudié chez les invertébrés. Dans une première partie de ma thèse, j'ai testé si les mouches, qui se nourrissent sur des milieux enrichis en micro-organismes, évitent de façon innée un 'nouveau' pathogène virulent Pseudomonas entomophila, et si elles ont la capacité d'apprendre à l'éviter. Bien que les mouches ne montrent pas d'évitement inné pour ce pathogène, elles diminuent leur préférence pour de la nourriture contaminée dans le temps, suggérant l'existence d'une forme d'apprentissage basée vraisemblablement sur la maladie générée par l'infection. J'ai ensuite observé que les mouches semblent être capables d'apprendre à éviter une odeur qui était au préalable associée avec ce pathogène, mais cela reste à confirmer par la collecte de données supplémentaires. Si cette observation est confirmée, cela sera la première fois, à ma connaissance, que l'évitement appris des pathogènes est décrit chez un insecte. L'effet détrimental des infections sur la cognition et plus particulièrement sur les capacités d'apprentissage est bien documenté chez les vertébrés et les insectes sociaux. Alors que les mécanismes sous-jacents sont détaillés chez les vertébrés, des études expérimentales font défaut chez les insectes. Dans une seconde partie de ma thèse, j'ai mesuré les effets d'une infection orale par des pathogènes naturels sur les capacités d'apprentissage associatif de la drosophile. Contrairement aux études précédentes chez les insectes, j'ai trouvé que les mouches infectées par le pathogène virulent P. entomophila apprennent mieux à associer une odeur avec des chocs mécaniques que des mouches non infectées. Cet effet semble spécifique à l'infection orale, et jusqu'à présent je n'ai pas pu conclure sur les contributions respectives de la virulence du pathogène et de l'activité immunitaire des mouches dans cet effet. De façon intéressante, les mouches infectées pourraient montrer une plus grande réactivité à la douleur physique. Si l'amélioration de l'apprentissage observée chez les mouches infectées était due en partie à l'activité du système immunitaire, mes résultats suggéreraient l'existence de connections physiologiques entre le système immunitaire et le système nerveux. Les mécanismes de ces connections seraient à explorer. L'apprentissage et l'immunité sont liés sur un plan physiologique chez les insectes sociaux. Les liens physiologiques entre les caractères résultent souvent de l'expression de liens entre ces caractères au niveau génétique. Cependant, chez les insectes sociaux, il n'y a pas de preuve que l'apprentissage et l'immunité soient liés par un compromis évolutif. J'ai précédemment rapporté un effet positif de l'infection sur l'apprentissage chez la drosophile. Cela pourrait suggérer qu'une relation génétique positive existerait entre l'apprentissage et l'immunité. Nous avons testé cette hypothèse par deux approches : le croisement diallèle avec des lignées consanguines, et les lignées isofemelles. Les deux approches ont fournies des résultats similaires : nous n'avons pas détecté de corrélation génétique additive entre l'apprentissage et la résistance à l'infection avec le croisement diallèle, et pas de corrélation génétique chez des mouches non adaptées aux conditions de laboratoire avec les lignées isofemelles. En ligne avec la littérature, ces deux études suggèrent que l'effet positif de l'infection sur l'apprentissage que j'ai précédemment observé ne refléterait pas un lien évolutif positif entre l'apprentissage et l'immunité. Néanmoins, l'existence de relations génétiques complexes n'est pas exclue.
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task