976 resultados para Competing Risks Models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes an integrative framework for the conduct of a more thorough and robust analysis regarding the linkage between Human Resource Management (HRM) and business performance. In order to provide the required basis for the proposed framework, initially, the core aspects of the main HRM models predicting business performance are analysed. The framework proposes both the principle of mediation (i.e. HRM outcomes mediate the relationship between organisational strategies and business performance) and the perspective of simultaneity of decision-making by firms with regard to the consideration of business strategies and HRM policies. In order to empirically test this framework the methodological approach of 'structural equation models' is employed. The empirical research is based on a sample of 178 organisations operating in the Greek manufacturing sector. The paper concludes that both the mediation principle and the simultaneity perspective are supported, emphasising further the positive role of HRM outcomes towards organisational performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The predictive accuracy of competing crude-oil price forecast densities is investigated for the 1994–2006 period. Moving beyond standard ARCH type models that rely exclusively on past returns, we examine the benefits of utilizing the forward-looking information that is embedded in the prices of derivative contracts. Risk-neutral densities, obtained from panels of crude-oil option prices, are adjusted to reflect real-world risks using either a parametric or a non-parametric calibration approach. The relative performance of the models is evaluated for the entire support of the density, as well as for regions and intervals that are of special interest for the economic agent. We find that non-parametric adjustments of risk-neutral density forecasts perform significantly better than their parametric counterparts. Goodness-of-fit tests and out-of-sample likelihood comparisons favor forecast densities obtained by option prices and non-parametric calibration methods over those constructed using historical returns and simulated ARCH processes. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark 31:727–754, 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, cities deal with unprecedented pollution and overpopulation problems, and Internet of Things (IoT) technologies are supporting them in facing these issues and becoming increasingly smart. IoT sensors embedded in public infrastructure can provide granular data on the urban environment, and help public authorities to make their cities more sustainable and efficient. Nonetheless, this pervasive data collection also raises high surveillance risks, jeopardizing privacy and data protection rights. Against this backdrop, this thesis addresses how IoT surveillance technologies can be implemented in a legally compliant and ethically acceptable fashion in smart cities. An interdisciplinary approach is embraced to investigate this question, combining doctrinal legal research (on privacy, data protection, criminal procedure) with insights from philosophy, governance, and urban studies. The fundamental normative argument of this work is that surveillance constitutes a necessary feature of modern information societies. Nonetheless, as the complexity of surveillance phenomena increases, there emerges a need to develop more fine-attuned proportionality assessments to ensure a legitimate implementation of monitoring technologies. This research tackles this gap from different perspectives, analyzing the EU data protection legislation and the United States and European case law on privacy expectations and surveillance. Specifically, a coherent multi-factor test assessing privacy expectations in public IoT environments and a surveillance taxonomy are proposed to inform proportionality assessments of surveillance initiatives in smart cities. These insights are also applied to four use cases: facial recognition technologies, drones, environmental policing, and smart nudging. Lastly, the investigation examines competing data governance models in the digital domain and the smart city, reviewing the EU upcoming data governance framework. It is argued that, despite the stated policy goals, the balance of interests may often favor corporate strategies in data sharing, to the detriment of common good uses of data in the urban context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we look at three models (mixture, competing risk and multiplicative) involving two inverse Weibull distributions. We study the shapes of the density and failure-rate functions and discuss graphical methods to determine if a given data set can be modelled by one of these models. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ngm−3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10−6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98×10−7 in PM10 and 1.06×10−6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Doctor in Electrical and Computer Engineering, specialization of Collaborative Networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper suggests that a convenient score test against non-nested alternatives can be constructed from the linear combination of the likelihood functions of the competing models. It is shown that this procedure is essentially a test for the correct specification of the conditional distribution of the variable of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Financing is a critical factor in ensuring the optimal development and delivery of a mental health system. The primary method of financing worldwide is tax-based. However many low income countries depend on out-of-pocket payments. There is a report on Irish Health Care funding but none that deals exclusively with mental health care. This paper analyses the various financial models that exist globally with respect to financing the mental health sector, examines the impact of various models on service users, especially in terms of relative ‘financial burden’ and provides a more detailed examination of the current mental health funding situation in Ireland After extensive internet and hardcopy research on the above topics, the findings were analysed and a number of recommendations were reached. Mental health service should be free at the point of delivery to achieve universal coverage. Government tax-based funding or mandatory social insurance with government top-ups, as required, appears the optimal option, although there is no one funding system applicable everywhere. Out-of-pocket funding can create a crippling financial burden for service users. It is important to employ improved revenue collection systems, eliminate waste, provide equitable resource distribution, ring fence mental health funding and cap the number of visits, where necessary. Political, economic, social and cultural factors play a role in funding decisions and this can be clearly seen in the context of the current economic recession in Ireland. Only 33% of the Irish population has access to free public health care and the number health insurance policy holders has dramatically declined, resulting in increased out-of-pocket payments. This approach risks negatively impacting on the social determinants of health, increasing health inequalities and negatively affecting economic productivity. It is therefore important the Irish government examines other options to provide funding for mental health services.