938 resultados para Community dynamics
Resumo:
Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.
Resumo:
Simple predator–prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the ‘paradox of enrichment’. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for the potential predator. Theoretical and experimental studies establish that variable chemical composition of prey affects the predator–prey dynamics. Recently, experimental and theoretical approaches have been made to incorporate explicitly the stoichiometric heterogeneity of simple predator–prey systems. Following the results of the previous experimental and theoretical advances, in this article we propose a simple phenomenological formulation of the variation of energy value at increased level of carrying capacity. Results of our study demonstrate that coupling the parameters representing the phenomenological energy value and carrying capacity in a realistic way, may avoid destabilization of community dynamics following enrichment. Additionally, under such coupling the producer–grazer system persists for only an intermediate zone of production—a result consistent with recent studies. We suggest that, while addressing the issue of enrichment in a general predator–prey model, the phenomenological relationship that we propose here might be applicable to avoid Rosenzweig’s paradox.
Resumo:
Cover crops are sown to provide a number of ecosystem services including nutrient management, mitigation of diffuse pollution, improving soil structure and organic matter content, weed suppression, nitrogen fixation and provision of resources for biodiversity. Although the decision to sow a cover crop may be driven by a desire to achieve just one of these objectives, the diversity of cover crops species and mixtures available means that there is potential to combine a number of ecosystem services within the same crop and growing season. Designing multi-functional cover crops would potentially help to reconcile the often conflicting agronomic and environmental agendas and contribute to the optimal use of land. We present a framework for integrating multiple ecosystem services delivered by cover crops that aims to design a mixture of species with complementary growth habit and functionality. The optimal number and identity of species will depend on the services included in the analysis, the functional space represented by the available species pool and the community dynamics of the crop in terms of dominance and co-existence. Experience from a project that applied the framework to fertility building leys in organic systems demonstrated its potential and emphasised the importance of the initial choice of species to include in the analysis
Resumo:
The food chain theory predict that presence of omnivory prevent the trophic cascade and could be a strong stabilizing factor over resource and consumer community dynamics, and that the nutrient enrichment destabilize populations dynamics. Most of the freshwater tropical reservoirs are eutrophic, and strategies that seek improve the water quality through the control of phytoplankton biomass and nutrient input, become essential for the improvement and preservation of water quality. The aim of this study was test the zooplanktivory (when larvae) and omnivory (when young and adult) effects of Nile Tilapia over the structure and dynamics of plankton communities, in addition or absence of nutrients enrichment. For this, one field experiment was performed with a factorial design 2x3 resulting in six treatments: control, without fish and nutrient (C); with omnivorous fish (O); with zooplanktivorous fish (Z); without fish and with enrichment of nutrients (NP); with omnivorous fish and nutrients (ONP); and, with zooplanktivorous fish and nutrients (ZNP). The two planktivory types reduced the zooplankton biomass and increased the phytoplankton biomass, but the omnivory of filter-feeding fish attenuated the trophic cascade magnitude. The fertilization by nutrients increases the nutrient concentrations in water and the phytoplankton biomass, but the effect on zooplankton is dependent of the trophic structure. In a general way, the effects of the fish and nutrient addition were addictive, but significant interactions among those factors were observed in the answer of some zooplankton groups. The effects of omnivorous fish over the temporal variability of phytoplankton and zooplankton biomass were very variable, the increase or reduce in variability of the plankton depending of the level of nutrients and of the analyzed variable. With base in this study, we conclude that the planktivory type exercised by the fish and the concentrations of nutrients in the water affects the force of pelagic trophic cascades and probably the success of biomanipulation programs for the handling of water quality in lakes and tropical reservoirs
Resumo:
In this study we analyzed the ovipositional behavior of C. albiceps, C. megacephala and L. eximia in response to previous presence of larvae of different species, both predator and prey. The preference for substrates that previously had had no larvae was predominant for all species. However, the experiments showed that C. megacephala and L. eximia avoid laying eggs principally in patches with previous presence of C. albiceps larvae. The implications of these results for the necrophagous Diptera community dynamics are discussed.
Resumo:
University of Tennessee, KnoxvilleNational Science Foundation (NSF)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The structure of an ecological community is shaped by several temporally varying mechanisms. Such mechanisms depend in a large extent on species interactions, which are themselves manifestations of the community's own structure. Dynamics and structure are then mutually determined. The assembly models are mathematical or computational models which simulate the dynamics of ecological communities resulting from a historical balance among colonizations and local extinctions, by means of sequential species introductions and their interactions with resident species. They allow analyzing that double relationship between structure and dynamics, recognizing its temporal dependence. It is assumed two spatiotemporal scales: (i) a local scale, where species co-occur and have their dynamics explicitly simulated and (ii) a regional scale without dynamics, representing the external environment which the potential colonizers come from. The mathematical and computational models used to simulate the local dynamics are quite variable, being distinguished according to the complexity mode of population representation, including or not intra or interspecific differences. They determine the community state, in terms of abundances, interactions, and extinctions between two successive colonization attempts. The schedules of species introductions also follow diverse (although arbitrary) rules, which vary qualitatively with respect to species appearance mode, whether by speciation or by immigration, and quantitatively with respect to their rates of introduction into the community. Combining these criteria arises a great range of approaches for assembly models, each with its own limitations and questions, but contributing in a complementary way to elucidate the mechanisms structuring natural communities. To present such approaches, still incipient as research fields in Brazil, to describe some methods of analysis and to discuss the implications of their assumptions for the understanding of ecological patterns are the objectives of the present review.
Resumo:
Defaunation, the loss or population decline of medium and large native vertebrates represents a significant threat to the biodiversity of tropical ecosystems. Here we review the anthropogenic drivers of defaunation, provide a brief historical account of the development of this field, and analyze the types of biological consequences of this impact on the structure and functioning of tropical ecosystems. We identify how defaunation, operating at a variety of scales, from the plot to the global level, affects biological systems along a gradient of processes ranging from plant physiology (vegetative and reproductive performance) and animal behavior (movement, foraging and dietary patterns) in the immediate term; to plant population and community dynamics and structure leading to disruptions of ecosystem functioning (and thus degrading environmental services) in the short to medium term; to evolutionary changes (phenotypic changes and population genetic structure) in the long-term. We present such a synthesis as a preamble to a series of papers that provide a compilation of our current understanding of the impact and consequences of tropical defaunation. We close by identifying some of the most urgent needs and perspectives that warrant further study to improve our understanding of this field, as we confront the challenges of living in a defaunated world. © 2013 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.
Resumo:
Adaptation does not necessarily lead to traits which are optimal for the population. This is because selection is often the strongest at the individual or gene level. The evolution of selfishness can lead to a 'tragedy of the commons', where traits such as aggression or social cheating reduce population size and may lead to extinction. This suggests that species-level selection will result whenever species differ in the incentive to be selfish. We explore this idea in a simple model that combines individual-level selection with ecology in two interacting species. Our model is not influenced by kin or trait-group selection. We find that individual selection in combination with competitive exclusion greatly increases the likelihood that selfish species go extinct. A simple example of this would be a vertebrate species that invests heavily into squabbles over breeding sites, which is then excluded by a species that invests more into direct reproduction. A multispecies simulation shows that these extinctions result in communities containing species that are much less selfish. Our results suggest that species-level selection and community dynamics play an important role in regulating the intensity of conflicts in natural populations.
Resumo:
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.