994 resultados para Commercial Concentration
Resumo:
A novel photovoltaic concentrator enables highly uniform irradiance on a small number of efficient solar cells. The maximum electrical power of a photovoltaic (PV) energy installation depends on three factors: the available irradiance, the size of the systems collecting sunlight, and the rate at which the device transforms light into electricity (the conversion efficiency). Developers can maximize the irradiance by carefully selecting the site and orientation of the solar facility. But they can only expand their sunlight collection systems for standard flat plate PV devices by increasing the number of solar cells, at greater cost. Here, we consider the advantages of an alternative PV system that produces more energy without increasing the number of cells used (actually, reducing it), by improving the conversion rates.We also present a new device that may enhance the commercial viability of such technologies.
Resumo:
This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2>0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production.
Resumo:
This paper complements a previous one [1] about toluene adsorption on a commercial spherical activated carbon and on samples obtained from it by CO2 or steam activation. The present paper deals with the activation of a commercial spherical carbon (SC) having low porosity and high bed density (0.85 g/cm3) using the same procedure. Our results show that SC can be well activated with CO2 or steam. The increase in the burn-off percentage leads to an increase in the gravimetric adsorption capacity (more intensively for CO2) and a decrease in bed density (more intensively for CO2). However, for similar porosity developments similar bed densities are achieved for CO2 and steam. Especial attention is paid to differences between both activating agents, comparing samples having similar or different activation rates, showing that CO2 generates more narrow porosity and penetrates more inside the spherical particles than steam. Steam activates more from the outside to the interior of the spheres and hence produces larger spheres size reductions. With both activation agents and with a suitable combination of porosity development and bed density, quite high volumetric adsorption values of toluene (up to 236 g toluene/L) can be obtained even using a low toluene concentration (200 ppmv).
Resumo:
In the present study, nanocrystalline titanium dioxide (TiO2) was prepared by sol–gel method at low temperature from titanium tetraisopropoxide (TTIP) and characterized by different techniques (gas adsorption, XRD, TEM and FTIR). Variables of the synthesis, such as the hydrolyzing agent (acetic acid or isopropanol) and calcination temperatures (300–800 °C), were analyzed to get uniform size TiO2 nanoparticles. The effect that these two variables have on the structure of the resultant TiO2 nanoparticles and on their photocatalytic activity is investigated. The photocatalytic activities of TiO2 nanoparticles were evaluated for propene oxidation at low concentration (100 ppmv) under two different kinds of UV light (UV-A ∼ 365 nm and UV-C ∼ 257.7 nm) and compared with Degussa TiO2 P-25, used as reference sample. The results show that both hydrolyzing agents allow to prepare TiO2 nanoparticles and that the hydrolyzing agent influences the crystalline structure and its change with the thermal treatments. Interestingly, the prepared TiO2 nanoparticles possess anatase phase with small crystalline size, high surface area and higher photocatalytic activity for propene oxidation than commercial TiO2 (Degussa P-25) under UV-light. Curiously, these prepared TiO2 nanoparticles are more active with the 365 nm source than with the 257.7 nm UV-light, which is a remarkable advantage from an application point of view. Additionally, the obtained results are particularly good when acetic acid is the hydrolyzing agent at both wavelengths used, possibly due to the high crystallinity, low anatase phase size and high surface oxygen groups’ content in the nanoparticles prepared with it, in comparison to those prepared using isopropanol.
Resumo:
The objective of this work was to study the effect of root and foliar application of two commercial products containing amino acids from plant and animal origin on iron (Fe) nutrition of tomato seedlings cultivated in two nutrient media: lime and normal nutrient solutions. In the foliar-application experiment, each product was sprayed with 0.5 and 0.7 mL L–1 2, 7, 12, and 17 d after transplanting. In the root application experiment, 0.1 and 0.2 mL L–1 of amino acids products were added to the nutrient solutions. In both experiments, untreated control plants were included as well. Foliar and root application of the product containing amino acids from animal origin caused severe plant-growth depression and nonpositive effects on Fe nutrition were found. In contrast, the application of the product from plant origin stimulated plant growth. Furthermore, significantly enhanced root and leaf FeIII-chelate reductase activity, chlorophyll concentration, leaf Fe concentration, and FeII : Fe ratio were found in tomato seedlings treated with the product from plant origin, especially when the amino acids were directly applied to the roots. These effects were more evident in plants developed under lime-induced Fe deficiency. The positive results on Fe uptake may be related to the action of glutamic acid, the most abundant amino acid in the formulation of the product from plant origin.
Resumo:
The growth performance and endocrine responses of male weaner pigs (3 to 8 weeks of age) was evaluated in two different environments (clean and dirty) and housing (single or groups of 10 pigs/pen) conditions. The dirty environment contained significantly elevated ammonia, carbon dioxide and dust levels compared with the clean environment. Pigs grew faster and consumed more feed in the clean environment and this was associated with reduced plasma cortisol concentrations compared with pigs in the dirty environment. Pigs housed in groups in the dirty environment had increased β-endorphin and decreased IGF-I concentrations compared to group housed pigs in the clean environment. Feed conversion efficiency did not differ due to environment or group housing. Plasma concentration of cortisol, p-endorphin, IGF-I and IGF-II did not differ between single and group housed pigs. Activity of the hypothalamic-pituitary-adrenal (HPA) axis was greater in response to environmental conditions than group housing, and this was associated with reduced growth in weaner pigs. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Methyl ketones, aldehydes and free saturated fatty acids were measured in the headspace of samples of two indirectly processed and two directly processed Australian commercial UHT milks during room temperature storage for 16 weeks. The analytes were isolated using headspace solid phase microextraction and analysed by gas chromatography coupled with flame ionisation detection. All methyl ketones and aldehydes increased during storage, With free saturated fatty acids exhibiting little change. On average, the total methyl ketone and aldehyde concentrations in the indirectly processed UHT milks were higher than those in the directly processed samples. A strong correlation was found between the concentration of methyl ketones and various heat indices (furosine, lactulose and undenatured whey proteins) in the milk samples.
Resumo:
Processed meat products are of worldwide importance and, because of their intrinsic factors as well as the processing methods, they are highly prone to fungal and mycotoxin contamination. Ochratoxin A (OTA) is the most significant mycotoxin in processed meat products. Penicillium nordicum is considered to be responsible for OTA contamination of meat products, as it is highly adapted to salt and protein-rich matrices and is moderately psycrotrophic. However, another OTA-producing fungus, Aspergillus westerdijkiae, adapted to carbon-rich matrices such as cereals and coffee beans, has been recently associated with high levels of OTA in meat products. Several Lactic Acid Bacteria (LAB) and yeasts have been tested as biocontrol agents against P. nordicum growth and OTA production in meat products, with promising results, but none of the studies have considered A. westerdijkiae. The aim of this work was to evaluate in vitro the effect of a commercial starter culture used in sausage fermentation and four yeasts isolated from dry-cured sausage on these two OTA-producing fungi, both in terms of fungal growth and of OTA production, using different meat-based culture media as model systems. The mechanisms underlying the observed effect were also studied. For this purpose, C. krusei, C. zeylanoides, R. mucilaginosa, R. glutinis, a mix of these yeasts and the starter culture were co-inoculated with P. nordicum and A. westerdijkiae in industrial sausage, traditional sausage, and ham-based media, under conditions of water activity, salt concentration and temperature that mimic real conditions at beginning and end of sausage curing process. Fungal growth was determined by measuring colony diameter, and OTA production was quantified by HPLC-FLD after extraction with methanol. Yeasts where found to inhibit significantly the growth of both fungi. P. nordicum was unable to produce detectable OTA in both sausage-based media under any condition. In ham, yeasts reduced OTA production, while the starter culture significantly increased it. Unexpectedly, OTA production by A. westerdijkiae was significantly stimulated in all media tested by all microorganisms. Matrix has a significant effect on OTA production by P. nordicum, but not by A. westerdijkiae, for which only temperature showed to have effect. By testing the mechanisms of action by which starter culture and C. zeylanoides influenced fungal responses, we were able to determine that direct contact and simultaneous growth of test organisms were the mechanisms more significantly involved in the responses. In conclusion, ochratoxigenic fungi do not all respond to antagonistic microorganisms in the same way. The use of biocontrol agents with the intent of reducing fungal growth and mycotoxin production by one fungus can have unexpected effects on others, thus leading to unforeseen safety problems. Further experiments are recommended to properly understand the reasons behind the different effects of microorganisms, to ensure their safe as biocontrol agents.
Resumo:
Background: Helminth intestinal parasitoses are responsible for high levels of child mortality and morbidity. Hence, the capacity to diagnose these parasitoses and consequently ensure due treatment represents a factor of great importance. Objectives: The main objective of this study involves comparing two methods of concentration, parasitrap and Kato-Katz, for the diagnosis of intestinal parasitoses in faecal samples. Methods: Sample processing made recourse to two different concentration Methods: the commercial parasitrap® method and the Kato-Katz method. Results: We correspondingly collected a total of 610 stool samples from pre-school and school age children. The results demonstrate the incidence of helminth parasites in 32.8% or 32.3% of the sample collected depending on whether the concentration method applied was either the parasitrap method or the Kato-Katz method. We detected a relatively high percentage of samples testing positive for two or more species of helminth parasites. We would highlight that in searching for larvae the Kato-Katz method does not prove as appropriate as the parasitrap method. Conclusion: Both techniques prove easily applicable even in field working conditions and returning mutually agreeing results. This study concludes in favour of the need for deworming programs and greater public awareness among the rural populations of Angola.
Resumo:
Heat stress limits the productivity of laying hens, as reflected by egg production and egg quality. The present study aimed at showing the correlations between egg quality parameters and environmental variables recorded on the day eggs were laid and on the previous days. Birds were housed in battery cages in a commercial poultry house. Main component analyses were used to verify associations between environmental and production variables, and Pearson's linear correlation tests were used to further investigate those associations. Analyses were carried out separately for to layer strains, Dekalb® White and Hy-Line® w36, and the variables egg weight (g), eggshell weight (g), specific gravity (g/cm³) and eggshell percentage (%) were compared with the environmental variables of the same day of the production, and one, two, three, and four days before egg production. Sound intensity measured inside the houses was positively associated with the quality parameters of eggs produced on the next day. Thermal environmental variables affected the egg quality differently in each strain, particularly air temperature, internal roof tile temperature, relative humidity, and air velocity. Ammonia concentration measured inside the houses was lower than 1ppm, and did not affect production performance.
Resumo:
Two as-synthesized meso- and macro-porous siliceous materials (MPSMs), i.e., Al-MCM-41 and SBA-15, were mixed with tobacco to study their effect on tobacco smoke chemistry. A reference cigarette, 3R4F, and a commercial cigarette, Fortuna, containing different percentages of MPSM were smoked in a smoking machine, and the mainstream smoke was analyzed. SBA-15 showed the highest reductions of nicotine; close to 90% when it was added at 8 mass %. The superb behavior of these materials may be related to their high particulate matter filtering efficiency in combination with their catalytic activity. The selectivity of these materials with respect to nicotine was also analyzed. Al-MCM-41 presents higher selectivity for condensed compounds than for gases, whereas SBA-15 presents similar ratios for both fractions. The highest selectivity was obtained for the liquid fraction when smoking 3R4F cigarettes mixed with Al-MCM-41.
Resumo:
Abstract The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N. Keywords Spinacia oleracea; chlorophyll meter; coir; peat; soilless culture systems
Resumo:
The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N.
Resumo:
Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.