961 resultados para Combinatorial Optimization


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le problème de tarification qui nous intéresse ici consiste à maximiser le revenu généré par les usagers d'un réseau de transport. Pour se rendre à leurs destinations, les usagers font un choix de route et utilisent des arcs sur lesquels nous imposons des tarifs. Chaque route est caractérisée (aux yeux de l'usager) par sa "désutilité", une mesure de longueur généralisée tenant compte à la fois des tarifs et des autres coûts associés à son utilisation. Ce problème a surtout été abordé sous une modélisation déterministe de la demande selon laquelle seules des routes de désutilité minimale se voient attribuer une mesure positive de flot. Le modèle déterministe se prête bien à une résolution globale, mais pèche par manque de réalisme. Nous considérons ici une extension probabiliste de ce modèle, selon laquelle les usagers d'un réseau sont alloués aux routes d'après un modèle de choix discret logit. Bien que le problème de tarification qui en résulte est non linéaire et non convexe, il conserve néanmoins une forte composante combinatoire que nous exploitons à des fins algorithmiques. Notre contribution se répartit en trois articles. Dans le premier, nous abordons le problème d'un point de vue théorique pour le cas avec une paire origine-destination. Nous développons une analyse de premier ordre qui exploite les propriétés analytiques de l'affectation logit et démontrons la validité de règles de simplification de la topologie du réseau qui permettent de réduire la dimension du problème sans en modifier la solution. Nous établissons ensuite l'unimodalité du problème pour une vaste gamme de topologies et nous généralisons certains de nos résultats au problème de la tarification d'une ligne de produits. Dans le deuxième article, nous abordons le problème d'un point de vue numérique pour le cas avec plusieurs paires origine-destination. Nous développons des algorithmes qui exploitent l'information locale et la parenté des formulations probabilistes et déterministes. Un des résultats de notre analyse est l'obtention de bornes sur l'erreur commise par les modèles combinatoires dans l'approximation du revenu logit. Nos essais numériques montrent qu'une approximation combinatoire rudimentaire permet souvent d'identifier des solutions quasi-optimales. Dans le troisième article, nous considérons l'extension du problème à une demande hétérogène. L'affectation de la demande y est donnée par un modèle de choix discret logit mixte où la sensibilité au prix d'un usager est aléatoire. Sous cette modélisation, l'expression du revenu n'est pas analytique et ne peut être évaluée de façon exacte. Cependant, nous démontrons que l'utilisation d'approximations non linéaires et combinatoires permet d'identifier des solutions quasi-optimales. Finalement, nous en profitons pour illustrer la richesse du modèle, par le biais d'une interprétation économique, et examinons plus particulièrement la contribution au revenu des différents groupes d'usagers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Afin d'enrichir les données de corpus bilingues parallèles, il peut être judicieux de travailler avec des corpus dits comparables. En effet dans ce type de corpus, même si les documents dans la langue cible ne sont pas l'exacte traduction de ceux dans la langue source, on peut y retrouver des mots ou des phrases en relation de traduction. L'encyclopédie libre Wikipédia constitue un corpus comparable multilingue de plusieurs millions de documents. Notre travail consiste à trouver une méthode générale et endogène permettant d'extraire un maximum de phrases parallèles. Nous travaillons avec le couple de langues français-anglais mais notre méthode, qui n'utilise aucune ressource bilingue extérieure, peut s'appliquer à tout autre couple de langues. Elle se décompose en deux étapes. La première consiste à détecter les paires d’articles qui ont le plus de chance de contenir des traductions. Nous utilisons pour cela un réseau de neurones entraîné sur un petit ensemble de données constitué d'articles alignés au niveau des phrases. La deuxième étape effectue la sélection des paires de phrases grâce à un autre réseau de neurones dont les sorties sont alors réinterprétées par un algorithme d'optimisation combinatoire et une heuristique d'extension. L'ajout des quelques 560~000 paires de phrases extraites de Wikipédia au corpus d'entraînement d'un système de traduction automatique statistique de référence permet d'améliorer la qualité des traductions produites. Nous mettons les données alignées et le corpus extrait à la disposition de la communauté scientifique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

De nombreux problèmes pratiques qui se posent dans dans le domaine de la logistique, peuvent être modélisés comme des problèmes de tournées de véhicules. De façon générale, cette famille de problèmes implique la conception de routes, débutant et se terminant à un dépôt, qui sont utilisées pour distribuer des biens à un nombre de clients géographiquement dispersé dans un contexte où les coûts associés aux routes sont minimisés. Selon le type de problème, un ou plusieurs dépôts peuvent-être présents. Les problèmes de tournées de véhicules sont parmi les problèmes combinatoires les plus difficiles à résoudre. Dans cette thèse, nous étudions un problème d’optimisation combinatoire, appartenant aux classes des problèmes de tournées de véhicules, qui est liée au contexte des réseaux de transport. Nous introduisons un nouveau problème qui est principalement inspiré des activités de collecte de lait des fermes de production, et de la redistribution du produit collecté aux usines de transformation, pour la province de Québec. Deux variantes de ce problème sont considérées. La première, vise la conception d’un plan tactique de routage pour le problème de la collecte-redistribution de lait sur un horizon donné, en supposant que le niveau de la production au cours de l’horizon est fixé. La deuxième variante, vise à fournir un plan plus précis en tenant compte de la variation potentielle de niveau de production pouvant survenir au cours de l’horizon considéré. Dans la première partie de cette thèse, nous décrivons un algorithme exact pour la première variante du problème qui se caractérise par la présence de fenêtres de temps, plusieurs dépôts, et une flotte hétérogène de véhicules, et dont l’objectif est de minimiser le coût de routage. À cette fin, le problème est modélisé comme un problème multi-attributs de tournées de véhicules. L’algorithme exact est basé sur la génération de colonnes impliquant un algorithme de plus court chemin élémentaire avec contraintes de ressources. Dans la deuxième partie, nous concevons un algorithme exact pour résoudre la deuxième variante du problème. À cette fin, le problème est modélisé comme un problème de tournées de véhicules multi-périodes prenant en compte explicitement les variations potentielles du niveau de production sur un horizon donné. De nouvelles stratégies sont proposées pour résoudre le problème de plus court chemin élémentaire avec contraintes de ressources, impliquant dans ce cas une structure particulière étant donné la caractéristique multi-périodes du problème général. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. La troisième partie propose un algorithme de recherche adaptative à grands voisinages où de nombreuses nouvelles stratégies d’exploration et d’exploitation sont proposées pour améliorer la performances de l’algorithme proposé en termes de la qualité de la solution obtenue et du temps de calcul nécessaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When triangulating a belief network we aim to obtain a junction tree of minimum state space. Searching for the optimal triangulation can be cast as a search over all the permutations of the network's vaeriables. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. In this paper we introduce an upper bound to the total junction tree weight as the cost function. The appropriatedness of this choice is discussed and explored by simulations. Then we present two ways of embedding the new objective function into continuous domains and show that they perform well compared to the best known heuristic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we investigate how the choice of the attenuation factor in an extended version of Katz centrality influences the centrality of the nodes in evolving communication networks. For given snapshots of a network, observed over a period of time, recently developed communicability indices aim to identify the best broadcasters and listeners (receivers) in the network. Here we explore the attenuation factor constraint, in relation to the spectral radius (the largest eigenvalue) of the network at any point in time and its computation in the case of large networks. We compare three different communicability measures: standard, exponential, and relaxed (where the spectral radius bound on the attenuation factor is relaxed and the adjacency matrix is normalised, in order to maintain the convergence of the measure). Furthermore, using a vitality-based measure of both standard and relaxed communicability indices, we look at the ways of establishing the most important individuals for broadcasting and receiving of messages related to community bridging roles. We compare those measures with the scores produced by an iterative version of the PageRank algorithm and illustrate our findings with two examples of real-life evolving networks: the MIT reality mining data set, consisting of daily communications between 106 individuals over the period of one year, a UK Twitter mentions network, constructed from the direct \emph{tweets} between 12.4k individuals during one week, and a subset the Enron email data set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to find cost-effective solutions for this problem. In addition, the proposed heuristics is used to solve some instances of the capacitated lot sizing problem with parallel machines. The results of the computational tests show that the proposed heuristics outperform other heuristics previously described in the literature. The results are confirmed by statistical tests. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic algorithms are commonly used to solve combinatorial optimizationproblems. The implementation evolves using genetic operators (crossover, mutation,selection, etc.). Anyway, genetic algorithms like some other methods have parameters(population size, probabilities of crossover and mutation) which need to be tune orchosen.In this paper, our project is based on an existing hybrid genetic algorithmworking on the multiprocessor scheduling problem. We propose a hybrid Fuzzy-Genetic Algorithm (FLGA) approach to solve the multiprocessor scheduling problem.The algorithm consists in adding a fuzzy logic controller to control and tunedynamically different parameters (probabilities of crossover and mutation), in anattempt to improve the algorithm performance. For this purpose, we will design afuzzy logic controller based on fuzzy rules to control the probabilities of crossoverand mutation. Compared with the Standard Genetic Algorithm (SGA), the resultsclearly demonstrate that the FLGA method performs significantly better.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To connect different electrical, network and data devices with the minimum cost and shortest path, is a complex job. In huge buildings, where the devices are placed at different locations on different floors and only some specific routes are available to pass the cables and buses, the shortest path search becomes more complex. The aim of this thesis project is, to develop an application which indentifies the best path to connect all objects or devices by following the specific routes.To address the above issue we adopted three algorithms Greedy Algorithm, Simulated Annealing and Exhaustive search and analyzed their results. The given problem is similar to Travelling Salesman Problem. Exhaustive search is a best algorithm to solve this problem as it checks each and every possibility and give the accurate result but it is an impractical solution because of huge time consumption. If no. of objects increased from 12 it takes hours to search the shortest path. Simulated annealing is emerged with some promising results with lower time cost. As of probabilistic nature, Simulated annealing could be non optimal but it gives a near optimal solution in a reasonable duration. Greedy algorithm is not a good choice for this problem. So, simulated annealing is proved best algorithm for this problem. The project has been implemented in C-language which takes input and store output in an Excel Workbook

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to investigate Ant Colony Algorithm for the traveling salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph. This paper is based on the ideas of ant colony algorithm and analysis the main parameters of the ant colony algorithm. Experimental results for solving TSP problems with ant colony algorithm show great effectiveness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solutions to combinatorial optimization, such as p-median problems of locating facilities, frequently rely on heuristics to minimize the objective function. The minimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. However, pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small branch of the literature suggests using statistical principles to estimate the minimum and use the estimate for either stopping or evaluating the quality of the solution. In this paper we use test-problems taken from Baesley's OR-library and apply Simulated Annealing on these p-median problems. We do this for the purpose of comparing suggested methods of minimum estimation and, eventually, provide a recommendation for practioners. An illustration ends the paper being a problem of locating some 70 distribution centers of the Swedish Post in a region.