972 resultados para Collagen remodeling
Resumo:
Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.
Resumo:
Strongyloidiasis is an intestinal parasitosis with an obligatory pulmonary cycle. A Th2-type immune response is induced and amplifies the cellular response through the secretion of inflammatory mediators. Although this response has been described as being similar to asthma, airway remodeling during pulmonary migration of larvae has not yet been established. The aim of this study was to identify the occurrence of airway remodeling during Strongyloides venezuelensis (S. v.) infection and to determine the ability of dexamethasone treatment to interfere with the mechanisms involved in this process. Rats were inoculated with 9,000 S. v. larvae, treated with dexamethasone (2 mg/kg) and killed at 1, 3, 5, 7, 14 and 21 days. Morphological and morphometric analyzes with routine stains and immunohistochemistry were conducted, and some inflammatory mediators were evaluated using ELISA. Goblet cell hyperplasia and increased bronchiolar thickness, characterized by edema, neovascularization, inflammatory infiltrate, collagen deposition and enlargement of the smooth muscle cell layer were observed. VEGF, IL1-beta and IL-4 levels were elevated throughout the course of the infection. The morphological findings and the immunomodulatory response to the infection were drastically reduced in dexamethasone-treated rats. The pulmonary migration of S. venezuelensis larvae produced a transitory, but significant amount of airway remodeling with a slight residual bronchiolar fibrosis. The exact mechanisms involved in this process require further study. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n = 8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (alpha-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11 +/- 0.49 vs. 5 +/- 0.3 mm Hg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8 +/- 0.26 vs. 5.02 +/- 0.21 mm Hg) and RV (5.1 +/- 0.21 vs. 4.2 +/- 0.12 mm Hg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (similar to 6-fold) and III (similar to 5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased a-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background/Aims: Epidemiological studies suggest that stress has an impact on asthmatic exacerbations. We evaluated if repeated stress, induced by forced swimming, modulates lung mechanics, distal airway inflammation and extracellular matrix remodeling in guinea pigs with chronic allergic inflammation. Methods: Guinea pigs were submitted to 7 ovalbumin or saline aerosols (1-5 mg/ml during 4 weeks; OVA and SAL groups). Twenty-four hours after the 4th inhalation, guinea pigs were submitted to the stress protocol 5 times a week during 2 weeks (SAL-S and OVA-S groups). Seventy-two hours after the 7th inhalation, guinea pigs were anesthetized and mechanically ventilated. Resistance and elastance of the respiratory system were obtained at baseline and after ovalbumin challenge. Lungs were removed, and inflammatory and extracellular matrix remodeling of distal airways was assessed by morphometry. Adrenals were removed and weighed. Results: The relative adrenal weight was greater in stressed guinea pigs compared to non-stressed animals (p < 0.001). Repeated stress increased the percent elastance of the respiratory system after antigen challenge and eosinophils and lymphocytes in the OVA-S compared to the OVA group (p < 0.001, p = 0.003 and p < 0.001). Neither collagen nor elastic fiber contents were modified by stress in sensitized animals. Conclusions: In this animal model, repeated stress amplified bronchoconstriction and inflammatory response in distal airways without interfering with extracellular matrix remodeling. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Introduction: Endometrial decidualization and associated extracellular matrix (ECM) remodeling are critical events to the establishment of the maternal-fetal interface and successful pregnancy. Here, we investigated the impact of type 1 diabetes on these processes during early embryonic development, in order to contribute to the understanding of the maternal factors associated to diabetic embryopathies. Methods: Alloxan-induced diabetic Swiss female mice were bred after different periods of time to determine the effects of diabetes progression on the development of gestational complications. Furthermore, the analyses focused on decidual development as well as mRNA expression, protein deposition and ultrastructural organization of decidual ECM. Results: Decreased number of implantation sites and decidual dimensions were observed in the group mated 90-110 days after diabetes induction (D), but not in the 50-70D group. Picrosirius staining showed augmentation in the fibrillar collagen network in the 90e110D group and, following immunohistochemical examination, that this was associated with increase in types I and V collagens and decrease in type III collagen and collagen-associated proteoglycans biglycan and lumican. qPCR, however, demonstrated that only type I collagen mRNA levels were increased in the diabetic group. Alterations in the molecular ratio among distinct collagen types and proteoglycans were associated with abnormal collagen fibrillogenesis, analyzed by transmission electron microscopy. Conclusions: Our results support the concept that the development of pregnancy complications is directly related with duration of diabetes (progression of the disease), and that this is a consequence of both systemic factors (i.e. disturbed maternal endocrine-metabolic profile) and uterine factors, including impaired decidualization and ECM remodeling
Resumo:
This text wants to explore the process of bone remodeling. The idea supported is that the signal, the cells acquire and which suggest them to change in their architectural conformation, is the potential difference on the free boundaries surfaces of collagen fibers. These ones represent the bone in the nanoscale. This work has as subject a multiscale model. Lots of studies have been made to try to discover the relationship between a macroscopic external bone load and the cellular scale. The tree first simulations have been a longitudinal, a flexion and a transversal compression force on a full longitudinal fiber 0-0 sample. The results showed first the great difference between a fully longitudinal stress and a flexion stress. Secondly a decrease in the potential difference has been observed in the transversal force configuration, suggesting that such a signal could be taken as the one, who leads the bone remodeling. To also exclude that the obtained results was not to attribute to a piezoelectric collagen effect and not to a mechanical load, different coupling analyses have been developed. Such analyses show this effect is really less important than the one the mechanical load is responsible of. At this point the work had to explore how bone remodeling could develop. The analyses involved different geometry and fibers percentage. Moreover at the beginning the model was to manually implement. The author, after an initial improvement of it, provided to implement a standalone version thanks to integration between Comsol Multiphysic, Matlab and Excel.
Resumo:
Hepatocyte growth factor (HGF) is involved in development and regeneration of the lungs. Human HGF, which was expressed specifically by alveolar epithelial type II cells after gene transfer, attenuated the bleomycin-induced pulmonary fibrosis in an animal model. As there are also regions that appear morphologically unaffected in fibrosis, the effects of this gene transfer to normal lungs is of interest. In vitro studies showed that HGF inhibits the formation of the basal lamina by cultured alveolar epithelial cells. Thus we hypothesized that, in the healthy lung, cell-specific expression of HGF induces a remodeling within septal walls. Electroporation of a plasmid of human HGF gene controlled by the surfactant protein C promoter was applied for targeted gene transfer. Using design-based stereology at light and electron microscopic level, structural alterations were analyzed and compared with a control group. HGF gene transfer increased the volume of distal air spaces, as well as the surface area of the alveolar epithelium. The volume of septal walls, as well as the number of alveoli, was unchanged. Volumes per lung of collagen and elastic fibers were unaltered, but a marked reduction of the volume of residual extracellular matrix (all components other than collagen and elastic fibers) and interstitial cells was found. A correlation between the volumes of residual extracellular matrix and distal air spaces, as well as total surface area of alveolar epithelium, could be established. Cell-specific expression of HGF leads to a remodeling of the connective tissue within the septal walls in the healthy lung, which is associated with more pronounced stretching of distal air spaces at a given hydrostatic pressure during instillation fixation.
Resumo:
BACKGROUND/AIM: Because the pericapillary basement membrane in skeletal muscles of patients with chronic critical limb ischemia (CLI) is thickened, we determined the expression patterns of genes involved in collagen metabolism, using samples from 9 CLI patients, 4 patients with acute limb ischemia and 4 healthy controls. METHODS: Gene array analysis, quantitative RT-PCR and semiquantitative grading of immunohistochemical reactivity were performed to determine mRNA/cDNA and protein concentrations. RESULTS: In CLI patients compared to controls, cDNA levels of matrix metalloproteinase (MMP)-9 and MMP-19 were higher, collagen type IV chains A1 and A2, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-2 were similar and MMP-2 were lower. On the protein level, MMP-2, MMP-9, MMP-19 and TIMP-1 were more abundantly expressed. In skeletal muscles from patients with acute limb ischemia, cDNA and protein levels of MMP-9, MMP-19, collagen type IV chains, TIMP-1 and TIMP-2 were high. MMP-2 was elevated at the protein but decreased on the cDNA level. CONCLUSION: Expression of basement membrane components in skeletal muscles of CLI and acute limb ischemia patients is altered, possibly contributing to the pathogenesis of peripheral arterial disease.
Resumo:
Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.
Resumo:
Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bronchial epithelial cells in the presence of unstimulated lung fibroblasts. We show that (i) mechanical stress can be communicated from stressed to unstressed cells to elicit a remodeling response, and (ii) the integrated response of two cell types to mechanical stress mimics key features of airway remodeling seen in asthma: namely, an increase in production of fibronectin, collagen types III and V, and matrix metalloproteinase type 9 (MMP-9) (relative to tissue inhibitor of metalloproteinase-1, TIMP-1). These observations provide a paradigm to use in understanding the management of mechanical forces on the tissue level.
Resumo:
Using immunohistochemistry and RNA analyses we examined the fate of components of a newly identified matrix that develops between granulosa cells (focimatrix, abbreviated from focal intraepithelial matrix) and of the follicular basal lamina in ovulating bovine ovarian follicles. Pre- and postovulatory follicles were generated by treatment with estradiol (Day 1), progesterone (Days 1-10), and prostaglandin analogue (Day 9) with either no further treatment (Group 1, n = 6) and or with 25 mg porcine LH (Day 11, Group 2, n = 8 or Day 10, Group 3, n = 8) and ovariectomy on Day 12 (12-14 hr post LH in Group 2, 38-40.5 hr in Group 3). In the time frame examined no loss of follicular basal lamina laminin chains beta 2 and gamma 1 or nidogen 1 was observed. In the follicular basal lamina collagen type IV alpha 1 and perlecan were present prior to ovulation; after ovulation collagen type IV alpha 1 was discontinuously distributed and perlecan was absent. Versican in the theca interna adjacent to the follicular basal lamina in preovulatory follicles was not observed post ovulation, however, the granulosa cells then showed strong cytoplasmic staining for versican. Expression of versican isoforms V0, V1, and V3 was detected at all stages. Focimatrix was observed in preovulatory follicles. It contained collagen type IV alpha 1, laminins beta 2 and gamma 1, nidogen 1 and perlecan and underwent changes in composition similar to that of the follicular basal lamina. In conclusion focimatrix and the follicular basal lamina are degraded at ovulation. Individual components are lost at different times.
Resumo:
Asthma is a multifactorial disease for which a variety of mouse models have been developed. A major drawback of these models is represented by the transient nature of the airway pathology peaking 24 to 72 hours after challenge and resolving in 1 to 2 weeks. The objective of this study is to characterize the temporal evolution of pulmonary inflammation and remodeling in a recently described mouse model of chronic asthma (8 week treatment with 3 allergens relevant for the human pathology: Dust mite, Ragweed, and Aspergillus; DRA). We studied the DRA model taking advantage of fluorescence molecular tomography (FMT) imaging using near-infrared probes to non-invasively evaluate lung inflammation and airway remodeling. At 4, 6, 8 or 11 weeks, cathepsin- and metalloproteinase-dependent fluorescence was evaluated in vivo. A subgroup of animals, after 4 weeks of DRA, was treated with Budesonide (100 µg/kg intranasally) daily for 4 weeks. Cathepsin-dependent fluorescence in DRA-sensitized mice resulted significantly increased at 6 and 8 weeks, and was markedly inhibited by budesonide. This fluorescent signal well correlated with ex vivo analysis such as bronchoalveolar lavage eosinophils and alveolar cell infiltration. Metalloproteinase-dependent fluorescence was significantly increased at 8 and 11 weeks, nicely correlated with collagen deposition, as evaluated histologically by Masson’s Trichrome staining, and airway epithelium hypertrophy, and was also partly inhibited by budesonide. In conclusion, FMT proved suitable for longitudinal study to evaluate asthma progression, both in terms of inflammatory cell infiltration and airway remodeling, allowing the determination of treatment efficacy in a chronic asthma model in mice.
Resumo:
The potential for serum amyloid P-component (SAP) to prevent cardiac remodeling and identify worsening diastolic dysfunction (DD) was investigated. The anti-fibrotic potential of SAP was tested in an animal model of hypertensive heart disease (spontaneously hypertensive rats treated with SAP [SHR - SAP] × 12 weeks). Biomarker analysis included a prospective study of 60 patients with asymptomatic progressive DD. Compared with vehicle-treated Wistar-Kyoto rats (WKY-V), the vehicle-treated SHRs (SHR-V) exhibited significant increases in left ventricular mass, perivascular collagen, cardiomyocyte size, and macrophage infiltration. SAP administration was associated with significantly lower left ventricular mass (p < 0.01), perivascular collagen (p < 0.01), and cardiomyocyte size (p < 0.01). Macrophage infiltration was significantly attenuated in the SHR-SAP group. Biomarker analysis showed significant decreases in SAP concentration over time in patients with progressive DD (p < 0.05). Our results indicate that SAP prevents cardiac remodeling by inhibiting recruitment of pro-fibrotic macrophages and that depleted SAP levels identify patients with advancing DD suggesting a role for SAP therapy.
Resumo:
In asymptomatic subjects B-type natriuretic peptide (BNP) is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM) alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS) and peripheral serum from patients with low (n = 14) and high BNP (n = 27). Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001). CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008), CITP (r = 0.35, p = 0.03) and PIIINP (r = 0.35, p = 0.001), and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002), IL-6 (r = 0.35, p = 0.04), and IL-8 (r = 0.54, p<0.001). The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007), TNF-α (3.2±0.5 versus 3.7±1.1, p = 003), IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02) and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04), and greater left ventricular mass index (97±20 versus 118±26 g/m(2), p = 0.03) and left atrial volume index (18±2 versus 21±4, p = 0.008). Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.
Resumo:
Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers.