947 resultados para Cognitive dysfunction
Resumo:
Several studies have supported a beneficial role of dietary flavonoids in reducing the risk/progression of chronic diseases (including hypertension, cardiovascular disease, certain cancers, type-2-diabetes, cognitive dysfunction, age-related bone disease). Their beneficial properties are likely to be affected by their structure, distribution in foods, food matrix, life habits (physical activity). Most dietary polyphenols reach the colon where they are metabolized to phenolic acids by gut bacteria. Lack of knowledge of the factors affecting flavonoid metabolism and bioavailability hinders understanding of their health effects. Therefore, this thesis aimed to investigate the effect of factors on bioavailability and metabolism of dietary polyphenols from orange juices (OJ) in in vitro and in vivo studies. In chapter 3, the variability of orange juice polyphenolic content was assessed using in vitro models of the human gastrointestinal tract. Chapter 4 investigated the reduced urinary phenolic acids after OJ and yoghurt (Y) in humans compared to OJ alone using in vitro models of the human gut. In chapter 5, raftiline and glucose were tested for effects on metabolism of hesperidin (flavanone not OJ). In chapter 6, an intervention study of 4 weeks moderate intensity exercise determined whether exercise affected bioavailability and metabolism of OJ flavanones in healthy sedentary females. The studies in this thesis showed that food sources, food matrix and physical exercise may determine the significant variations in bioavailability and metabolism of flavonoids, seen in a number of studies. These factors could result in differences in bioactivity and bioefficacy of polyphenols, and need to be taken into account in further studies of the effects of flavanones on disease risk.
Resumo:
Nowadays it is still difficult to perform an early and accurate diagnosis of dementia, therefore many research focus on the finding of new dementia biomarkers that can aid in that purpose. So scientists try to find a noninvasive, rapid, and relatively inexpensive procedures for early diagnosis purpose. Several studies demonstrated that the utilization of spectroscopic techniques, such as Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy could be an useful and accurate procedure to diagnose dementia. As several biochemical mechanisms related to neurodegeneration and dementia can lead to changes in plasma components and others peripheral body fluids, blood-based samples and spectroscopic analyses can be used as a more simple and less invasive technique. This work is intended to confirm some of the hypotheses of previous studies in which FTIR was used in the study of plasma samples of possible patient with AD and respective controls and verify the reproducibility of this spectroscopic technique in the analysis of such samples. Through the spectroscopic analysis combined with multivariate analysis it is possible to discriminate controls and demented samples and identify key spectroscopic differences between these two groups of samples which allows the identification of metabolites altered in this disease. It can be concluded that there are three spectral regions, 3500-2700 cm -1, 1800-1400 cm-1 and 1200-900 cm-1 where it can be extracted relevant spectroscopic information. In the first region, the main conclusion that is possible to take is that there is an unbalance between the content of saturated and unsaturated lipids. In the 1800-1400 cm-1 region it is possible to see the presence of protein aggregates and the change in protein conformation for highly stable parallel β-sheet. The last region showed the presence of products of lipid peroxidation related to impairment of membranes, and nucleic acids oxidative damage. FTIR technique and the information gathered in this work can be used in the construction of classification models that may be used for the diagnosis of cognitive dysfunction.
Resumo:
There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.
Resumo:
Cerebral vascular dysregulation has been increasingly implicated as a risk factor in the development of Alzheimer disease (AD)1; however, because of the difficulties associated with assessing and visualizing the cerebral vasculature directly, the ability to detect such dysregulation, noninvasively, is currently limited.2 Consequently, one concept that is being increasingly explored is the possibility of using the eye as a "window to the brain"; this approach has reasonable scientific validity as the retinal and brain vessels share a large number of embryological, anatomic, and functional similarities.2 Indeed, previous research has demonstrated a correlation between cognition and the geometry of the retinal vessels in elderly people.3 The aim of this pilot study, therefore, was to explore whether microvascular functional anomalies are evident at the retinal level in mild AD patients and to determine whether these anomalies relate to the degree of concurrent cognitive deficit..
Resumo:
This is a guidebook for clinicians on how to conduct assessment interviews with patients presenting with common psychological disorders. The orientation is behavioural and cognitive; so the book has wide applicability, as most clinicians explicitly or implicitly accept this combination of models as a useful basis for assessing and treating these problems. The problem areas covered are: fear and anxiety problems; depression, obesity; interpersonal problems; sexual dysfunction; insomnia; headache; and substance abuse.
Resumo:
In view of accumulating evidence of vascular pathology in Alzheimer's disease (AD), we tested the hypothesis that AD patients have impaired endothelial function. This was assessed using the technique of strain-gauge venous occlusion plethysmography, which measures forearm blood flow (FBF). Intra-arterial (brachial) infusion of acetylcholine (ACh) and sodium nitroprusside (SNP) was used to assess local endothelial dependent and independent responses, respectively. There was no difference in the basal FBF of patients and controls. ACh and SNP caused dose-related increases in FBF from baseline, but no difference was recorded between the AD and control group. This study provides no evidence of endothelial dysfunction in the systemic circulation of patients with AD.
Resumo:
BACKGROUND: Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. METHODS: Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. RESULTS: Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. CONCLUSIONS: aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.
Resumo:
β-amyloid1-42 (Aβ1-42) is a major endogenous pathogen underlying the aetiology of Alzheimer's disease (AD). Recent evidence indicates that soluble Aβ oligomers, rather than plaques, are the major cause of synaptic dysfunction and neurodegeneration. Small molecules that suppress Aβ aggregation, reduce oligomer stability or promote off-pathway non-toxic oligomerization represent a promising alternative strategy for neuroprotection in AD. MRZ-99030 was recently identified as a dipeptide that modulates Aβ1-42 aggregation by triggering a non-amyloidogenic aggregation pathway, thereby reducing the amount of intermediate toxic soluble oligomeric Aβ species. The present study evaluated the relevance of these promising results with MRZ-99030 under pathophysiological conditions i.e. against the synaptotoxic effects of Aβ oligomers on hippocampal long term potentiation (LTP) and two different memory tasks. Aβ1-42 interferes with the glutamatergic system and with neuronal Ca2+ signalling and abolishes the induction of LTP. Here we demonstrate that MRZ-99030 (100–500 nM) at a 10:1 stoichiometric excess to Aβ clearly reversed the synaptotoxic effects of Aβ1-42 oligomers on CA1-LTP in murine hippocampal slices. Co-application of MRZ-99030 also prevented the two-fold increase in resting Ca2+ levels in pyramidal neuron dendrites and spines triggered by Aβ1-42 oligomers. In anaesthetized rats, pre-administration of MRZ-99030 (50 mg/kg s.c.) protected against deficits in hippocampal LTP following i.c.v. injection of oligomeric Aβ1-42. Furthermore, similar treatment significantly ameliorated cognitive deficits in an object recognition task and under an alternating lever cyclic ratio schedule after the i.c.v. application of Aβ1-42 and 7PA2 conditioned medium, respectively. Altogether, these results demonstrate the potential therapeutic benefit of MRZ-99030 in AD.
Resumo:
Tese de doutoramento, Medicina (Neurologia), Universidade de Lisboa, Faculdade de Medicina, 2015
Resumo:
Note de l'éditeur : This article may not exactly replicate the final version published in the journal. It is not the copy of record. / Cet article ne constitue pas la version officielle, et peut différer de la version publiée dans la revue.
Resumo:
Individuals with fragile X syndrome (FXS) commonly display characteristics of social anxiety, including gaze aversion, increased time to initiate social interaction, and difficulty forming meaningful peer relationships. While neural correlates of face processing, an important component of social interaction, are altered in FXS, studies have not examined whether social anxiety in this population is related to higher cognitive processes, such as memory. This study aimed to determine whether the neural circuitry involved in face encoding was disrupted in individuals with FXS, and whether brain activity during face encoding was related to levels of social anxiety. A group of 11 individuals with FXS (5 M) and 11 age-and gender-matched control participants underwent fMRI scanning while performing a face encoding task with onlineeye-tracking. Results indicate that compared to the control group, individuals with FXS exhibited decreased activation of prefrontal regions associated with complex social cognition, including the medial and superior frontal cortex, during successful face encoding. Further, the FXS and control groups showed significantly different relationships between measures of social anxiety (including gaze-fixation) and brain activity during face encoding. These data indicate that social anxiety in FXS may be related to the inability to successfully recruit higher level social cognition regions during the initial phases of memory formation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Our results suggest that central serotonin activity influences the appraisal of close intimate partnerships, raising the possibility that serotonergic dysfunction contributes to altered cognitions about relationships in psychiatric illnesses.
Resumo:
Objective. To evaluate the neuropsychological profile and health-related quality of life (HRQOL) of adults who had rheumatic fever (RF) during childhood with and without Sydenham's chorea (SC).Methods. Three groups of patients were assessed: adults who had RF with SC during childhood (SC group), adults who had RF without SC during childhood (RF group), and controls (CT group). A range of neuropsychological tests looked at several cognitive domains. HRQOL was measured through a Brazilian version of the Short Form 36 (SF-36) health survey.Results. Twenty patients were included in the SC group, 23 patients in the RF group, and 19 patients in the CT group. The 3 groups were homogeneous regarding sex (P = 0.078), age (P = 0.799), schooling (P = 0.600), socioeconomic status (P = 0.138), intelligence quotient (P = 0.329), and scores for anxiety (P = 0.156) and depression (P = 0.076). The SC group demonstrated inferior performance in tests that assessed attention (Digit Span Forward [ P = 0.005], Corsi Block Forward [ P = 0.014]), speeded information processing (Trail Making A [ P = 0.009], Symbol Search [ P = 0.042]), and executive functions and working memory (Corsi Block Backward [ P = 0.028]), and higher scores for attention deficit scale (P = 0.030) when compared with the RF and CT groups. They also showed a tendency toward lower scores in the physical aspects, vitality, emotional aspects, and mental health domains of the SF-36. The RF group had a lower score for the general health domain than the CT group (P = 0.030).Conclusion. Patients who had SC during childhood can exhibit inferior performance in tasks that evaluate attention, speeded information processing, executive functions, and working memory in adult life. Therefore, there is indirect evidence of the persistence of dysfunction in cerebral circuits involved with the basal ganglia. They also presented a worse self-evaluation in HRQOL that was not related to cognitive impairments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)