994 resultados para Coastal dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tidal influence on groundwater hydrodynamics, salt-water intrusion and submarine groundwater discharge from coastal/estuarine aquifers is poorly quantified for systems with a mildly sloping beach, in contrast to the case where a vertical beach face is assumed. We investigated the effect of beach slope for a coastal aquifer adjacent to a low-relief estuary, where industrial waste was emplaced over the aquifer. The waste was suspected to discharge leachate towards the estuary. Field observations at various locations showed that tidally induced groundwater head fluctuations were skewed temporally. Frequency analysis suggested that the fluctuation amplitudes decreased exponentially and the phase-tags increased Linearly for the primary tidal signals as they propagated inland. Salinisation zones were observed in the bottom part of the estuary and near the beach surface. Flow and transport processes in a cross-section perpendicular to the estuary were simulated using SEAWAT-2000, which is capable of depicting density-dependent flow and multi-species transport. The simulations showed that the modelled water table fluctuations were in good agreement with the monitored data. Further simulations were conducted to gain insight into the effects of beach slope. In particular the limiting case of a vertical beach face was considered. The simulations showed that density difference and tidal forcing drive a more complex hydrodynamic pattern for the mildly sloping beach than the vertical beach, as well as a profound asymmetry in tidally induced water table fluctuations and enhanced salt-water intrusion. The simulation results also indicated that contaminant transport from the aquifer to the estuary was affected by the tide, where for the mildly sloping beach, the tide tended to intensify the vertical mass exchange in the vicinity of the shorelines, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi-steady-slate rise in the mean water-table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed anti this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water-table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies on tidal water table dynamics in unconfined coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction based on the assumption of a straight coastline. Here, two-dimensional analytical solutions are derived to study the effects of rhythmic coastlines on tidal water table fluctuations. The computational results demonstrate that the alongshore variations of the coastline can affect the water table behavior significantly, especially in areas near the centers of the headland and embayment. With the coastline shape effects ignored, traditional analytical solutions may lead to large errors in predicting coastal water table fluctuations or in estimating the aquifer's properties based on these signals. The conditions under which the coastline shape needs to be considered are derived from the new analytical solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alfacs and Fangar Bay in the Ebro Delta, NW Mediterranean are the major sites in Catalonia for shellfish cultivation. These bays are subject to occasional closures in shellfish harvesting due to the presence of phycotoxins. Fish kills have also been associated with harmful algal blooms. The comparison of phytoplankton dynamics in both bays offers the opportunity to reveal differences in bloom patterns of species known to be harmful for the ecosystem and aquaculture activities. Field research is underway under the GEOHAB framework within the Core Research Project on HABs in Fjords and Coastal Embayments. The overall objective of this study is to improve our understanding of HAB biogeographical patterns, and key elements driving bloom dynamics in time and space within these semi-constrained embayments. Via the comparative approach we aim to improve the prediction for monitoring purposes, with a focus on Karlodinium spp. associated with massive kills of aquaculture species. This objective is addressed by incorporating long-term time series of phytoplankton identification and enumeration with the first results of recent field work in both bays. The latter includes the application of optical sensors, to yield a complementary view with enhanced spatial and temporal resolution of bloom phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salinity levels in soils of the Outer Coastal Plain of Rio Grande do Sul, Brazil, can be high, due to excess of Na in the irrigation water, evapotranspiration and soil development from marine sediments. The cultivation of irrigated rice could be an alternative, since ion uptake as well as leaching by the establishment of a water layer could mitigate the effects of soil salinity. This study aimed to evaluate the dynamics of basic cations in the solution of Albaqualf soils with different salinity levels growing irrigated rice. The plow layer contained exchangeable Na percentages (ESP) of 5.6, 9.0, 21.2 and 32.7 %. The plant stand, dry matter, Na, K and Ca + Mg uptake at full flowering and grain yield were evaluated. The levels of Na, K, Ca + Mg and electrical conductivity (EC) in the soil solution were also measured weekly during the rice cycle at four soil depths, in the water layer and irrigation water. The Na, K and Ca + Mg uptake by rice at full flowering was used to estimate ion depletion from the layer under root influence. Soil salinity induced a reduction in the rice stand, especially in the soil with ESP of 32.7 %, resulting in lower cation uptake and very low yield at that site. As observed in the water layer and irrigation water, the Na, K, Ca + Mg and EC levels in the soil solution decreased with time at depths of 5, 10 and 20 cm, regardless of the original soil salinity, showing that cation dynamics in the plow layer was determined by leaching and root uptake, rather than by the effect of evapoconcentration of basic cations in the soil surface layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice in Rio Grande do Sul State is grown mostly under flooding, which induces a series of chemical, physical and biological changes in the root environment. These changes, combined with the presence of rice plants, affect the availability of exchangeable ammonium (NH4+) and pH of soil solution, whereas the dynamics of both variables can be influenced by soil salinity, a common problem in the coastal region. This study was conducted to evaluate the dynamics of exchangeable NH4+ and pH in the soil solution, and their relation in the solution of Albaqualf soils with different salinity levels, under rice. Four field experiments were conducted with soils with exchangeable Na percentage (ESP) of 5.6, 9.0, 21.2, and 32.7 %. Prior to flooding, soil solution collectors were installed at depths of 5, 10 and 20 cm. The soil solution was collected weekly, from 7 to 91 days after flooding (DAF), to analyze exchangeable NH4+ and pH in the samples. Plant tissue was sampled 77 DAF, to determine N uptake and estimate the contribution of other N forms to rice nutrition. The content of exchangeable NH4+ decreased over time at all sites and depths, with a more pronounced reduction in soils with lower salinity levels, reaching values close to zero. A possible contribution of non-exchangeable NH4+ forms and N from soil organic matter to rice nutrition was observed. Soil pH decreased with time in soils with ESP 5.6 and 9.0 %, being positively correlated with the decreasing NH4+ levels at these sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands) and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major oil spills can have long-term impacts since oil pollution does not only result in acute mortality of marine organisms, but also affects productivity levels, predator-prey dynamics, and damages habitats that support marine communities. However, despite the conservation implications of oil accidents, the monitoring and assessment of its lasting impacts still remains a difficult and daunting task. Here, we used European shags to evaluate the overall, lasting effects of the Prestige oil spill (2002) on the affected marine ecosystem. Using δ15N and Hg analysis, we trace temporal changes in feeding ecology potentially related to alterations of the food web due to the spill. Using climatic and oceanic data, we also investigate the influence of North Atlantic Oscillation (NAO) index, the sea surface temperature (SST) and the chlorophyll a (Chl a) on the observed changes. Analysis of δ15N and Hg concentrations revealed that after the Prestige oil spill, shag chicks abruptly switched their trophic level from a diet based on a high percentage of demersal-benthic fish to a higher proportion of pelagic/semi-pelagic species. There was no evidence that Chl a, SST and NAO reflected any particular changes or severity in environmental conditions for any year or season that may explain the sudden change observed in trophic level. Thus, this study highlighted an impact on the marine food web for at least three years. Our results provide the best evidence to date of the long-term consequences of the Prestige oil spill. They also show how, regardless of wider oceanographic variability, lasting impacts on predator-prey dynamics can be assessed using biochemical markers. This is particularly useful if larger scale and longer term monitoring of all trophic levels is unfeasible due to limited funding or high ecosystem complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is still limited understanding of the processes underlying benthic species dynamics in marine coastal habitats, which are of disproportionate importance in terms of productivity and biodiversity. The life-history traits of long-lived benthic species in these habitats are particularly poorly documented. In this study, we assessed decadal patterns of population dynamics for ten sponge and anthozoan species that play key structural roles in coralligenous outcrops (~25 m depth) in two areas of the NW Mediterranean Sea. This study was based on examination of a unique long-term photographic series, which allowed analysis of population dynamics over extensive spatial and time spans for the very first time. Specifically, 671 individuals were censused annually over periods of 25-, 15-, and 5-years. This long-term study quantitatively revealed a common life-history pattern among the ten studied species, despite the fact they present different growth forms. Low mortality rates (3.4% yr−1 for all species combined) and infrequent recruitment events (mean value of 3.1±0.5 SE recruits yr−1) provided only a very small fraction of the new colonies required to maintain population sizes. Overall, annual mortality and recruitment rates did not differ significantly among years; however, some species displayed important mortality events and recruitment pulses, indicating variability among species. Based on the growth rates of these 10 species, we projected their longevity and, obtained a mean estimated age of 25-200 years. Finally, the low to moderate turnover rates (mean value 0.80% yr−1) observed among the coralligenous species were in agreement with their low dynamics and persistence. These results offer solid baseline data and reveal that these habitats are among the most vulnerable to the current increases of anthropogenic disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crossroads, crucibles and refuges are three words that may describe natural coastal lagoon environments. The words refer to the complex mix of marine and terrestrial influences, prolonged dilution due to the semi-enclosed nature and the function of a habitat for highly diverse plant and animal communities, some of which are endangered. To attain a realistic picture of the present situation, high vulnerability to anthropogenic impact should be added to the description. As the sea floor in coastal lagoons is usually entirely photic, macrophyte primary production is accentuated compared with open sea environments. There is, however, a lack of proper knowledge on the importance of vegetation for the general functioning of coastal lagoon ecosystems. The aim of this thesis is to assess the role of macrophyte diversity, cover and species identity over temporal and spatial scales for lagoon functions, and to determine which steering factors primarily restrict the qualitative and quantitative composition of vegetation in coastal lagoons. The results are linked to patterns of related trophic levels and the indicative potential of vegetation for assessment of general conditions in coastal lagoons is evaluated. This thesis includes five field studies conducted in flads and glo-flads in the brackish water northern Baltic Sea. Flads and glo-flads are defined as a Baltic variety of coastal lagoons, which due to an inlet threshold and post-glacial landuplift slowly will be isolated from the open sea. This process shrinks inlet size, increases exposure and water retention, and is called habitat isolation. The studied coastal lagoons are situated in the archipelago areas of the eastern coast of Sweden, the Åland Islands and the south-west mainland of Finland, where land-uplift amounts to ca. 5 mm/ per year. Out of 400 evaluated sites, a total of 70 lagoons varying in inlet size, archipelago position and anthropogenic influence to cover for essential environmental variation were chosen for further inventory. Vegetation composition, cover and richness were measured together with several hydrographic and morphometric variables in the lagoons both seasonally and inter-annually to cover for general regional, local and temporal patterns influencing lagoon and vegetation development. On smaller species-level scale, the effects of macrophyte species identity and richness for the fish habitat function were studied by examining the influence of plant interaction on juvenile fish diversity. Thus, the active election of plant monoand polycultures by fish and the diversity of fish in the respective culture were examined and related to plant height and water depth. The lagoons and vegetation composition were found to experience a regime shift initiated by increased habitat isolation along with land-uplift. Vegetation composition altered, richness decreased and cover increased forming a less isolated and more isolated regime, named the vascular plant regime and charophyte regime, respectively according to the dominant vegetation. As total phosphorus in the water, turbidity and the impact of regional influences decreased in parallel, the dominance of charophytes and increasing cover seemed to buffer and stabilize conditions in the charophyte regime and indicated an increased functional role of vegetation for the lagoon ecosystem. The regime pattern was unaffected by geographical differences, while strong anthropogenic impact seemed to distort the pattern due to loss of especially Chara tomentosa L. in the charophyte regime. The regimes were further found unperturbed by short-time temporal fluctuations. In fact the seasonal and inter-annual dynamics reinforced the functional difference between the regimes by the increasing role of vegetation along habitat isolation and the resemblance to lake environments for the charophyte regime. For instance, greater total phosphorus and chlorophyll a concentrations in the water in the beginning of the season in the charophyte regime compared with the vascular plant regime presented a steeper reduction to even lower values than in the vascular plant regime along the season. Despite a regional importance and positive relationship of macrophyte diversity in relation to trophic diversity, species identity was underlined in the results of this thesis, especially with decreasing spatial scale. This result was supported partly by the increased role of charophytes in the functioning of the charophyte regime, but even more explicitly by the species-specific preference of juvenile fish for tall macrophyte monocultures. On a smaller species-level scale, tall plant species in monoculture seemed to be able to increase their length, indicating that negative selection forms preferred habitat structures, which increase fish diversity. This negative relationship between plant and fish diversity suggest a shift in diversity patterns among trohic levels on smaller scale. Thus, as diversity patterns seem complex and diverge among spatial scales, it might be ambiguous to extend the understanding of diversity relationships from one trophic level to the other. All together, the regime shift described here presents similarities to the regime development in marine lagoon environments and shallow lakes subjected to nutrient enrichment. However, due to nutrient buffering by vegetation with increased isolation and water retention as a consequence of the inlet threshold, the development seems opposite to the course along an eutrophication gradient described in marine lagoons lacking an inlet threshold, where the role of vegetation decreases. Thus, the results imply devastating consequences of inlet dredging (decreasing isolation) in terms of vegetation loss and nutrient release, and call for increased conservational supervision. Especially the red listed charophytes would suffer negatively from such interference and the consequences are likely to also deteriorate juvenile fish production. The fact that a new species to Finland, Chara connivens Salzm. Ex. Braun 1835 was discovered during this study further indicates a potential of the lagoons serving as refuges for rare species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In coastal waters, physico-chemical and biological properties and constituents vary at different time scales. In the study area of this thesis, within the Archipelago Sea in the northern Baltic Sea, seasonal cycles of light and temperature set preconditions for intra-annual variations, but developments at other temporal scales occur as well. Weather-induced runoffs and currents may alter water properties over the short term, and the consequences over time of eutrophication and global changes are to a degree unpredictable. The dynamic characteristics of northern Baltic Sea waters are further diversified at the archipelago coasts. Water properties may differ in adjacent basins, which are separated by island and underwater thresholds limiting water exchange, making the area not only a mosaic of islands but also one of water masses. Long-term monitoring and in situ observations provide an essential data reserve for coastal management and research. Since the seasonal amplitudes of water properties are so high, inter-annual comparisons of water-quality variables have to be based on observations sampled at the same time each year. In this thesis I compare areas by their temporal characteristics, using both inter-annual and seasonal data. After comparing spatial differences in seasonal cycles, I conclude that spatial comparisons and temporal generalizations have to be made with caution. In classifying areas by the state of their waters, the results may be biased even if the sampling is annually simultaneous, since the dynamics of water properties may vary according to the area. The most comprehensive view of the spatiotemporal dynamics of water properties would be achieved by means of comparisons with data consisting of multiple annual samples. For practical reasons, this cannot be achieved with conventional in situ sampling. A holistic understanding of the spatiotemporal features of the water properties of the Archipelago Sea will have to be based on the application of multiple methods, complementing each other’s spatial and temporal coverage. The integration of multi-source observational data and time-series analysis may be methodologically challenging, but it will yield new information as to the spatiotemporal regime of the Archipelago Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is proposed to study the suspended sediment transport characteristics of river basins of Kerala and to model suspended sediment discharge mechanism for typical micro-watersheds. The Pamba river basin is selected as a representative hydrologic regime for detailed studies of suspended sediment characteristics and its seasonal variation. The applicability of various erosion models would be tested by comparing with the observed event data (by continuous monitoring of rainfall, discharge, and suspended sediment concentration for lower order streams). Empirical, conceptual and physically distributed models were used for making the comparison of performance of the models. Large variations in the discharge and sediment quantities were noticed during a particular year between the river basins investigated and for an individual river basin during the years for which the data was available. In general, the sediment yield pattern follows the seasonal distribution of rainfall, discharge and physiography of the land. This confirms with similar studies made for other Indian rivers. It was observed from this study, that the quantity of sediment transported downstream shows a decreasing trend over the years corresponding to increase in discharge. For sound and sustainable management of coastal zones, it is important to understand the balance between erosion and retention and to quantify the exact amount of the sediments reaching this eco-system. This, of course, necessitates a good length of time series data and more focused research on the behaviour of each river system, both present and past. In this realm of river inputs to ocean system, each of the 41 rivers of Kerala may have dominant yet diversified roles to influence the coastal ecosystem as reflected from this study on the major fraction of transport, namely the suspended sediments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims at deciphering the processes that control the nutrient distribution along the EEZ (Exclusive Economic Zone of India) of the west coast of India and to bring out its linkage with primary and secondary productivity. This work assume utmost importance as very few studies have hitherto focused entirely on the EEZ of the west coast of India to address the biochemical responses brought about by monsoons. The present study examines the seasonal variations in physicochemical parameters and associated primary biological responses along the west coast of India. This study targets to measure and understand the shelf ocean exchange in a typical coastal upwelling region of the southeast Arabian Sea, and the influence of convective mixing along the northern part of the west coast of India. The study focuses more directly on coastal upwelling along the southwest coast of India, within the EEZ. The effects of coastal upwelling, eddy formation and the offshore advection are apparent in the present investigation. This has consequences to fisheries and climate, in energy transfer to the food chain and the increased sequestering of carbon in the ocean. The study also focuses on the Oxygen Minimum Zone (OMZ) and dentrification observed along the EEZ of the west coast of India on a seasonal scale. In the study, an attempt is also made to demarcate the geographical boundaries of the denitrification zone in the EEZ of India and on the nature and magnitude of these variations, on a seasonal and inter annual scales