960 resultados para Clinical Reasoning
Resumo:
Retrospective clinical data presents many challenges for data mining and machine learning. The transcription of patient records from paper charts and subsequent manipulation of data often results in high volumes of noise as well as a loss of other important information. In addition, such datasets often fail to represent expert medical knowledge and reasoning in any explicit manner. In this research we describe applying data mining methods to retrospective clinical data to build a prediction model for asthma exacerbation severity for pediatric patients in the emergency department. Difficulties in building such a model forced us to investigate alternative strategies for analyzing and processing retrospective data. This paper describes this process together with an approach to mining retrospective clinical data by incorporating formalized external expert knowledge (secondary knowledge sources) into the classification task. This knowledge is used to partition the data into a number of coherent sets, where each set is explicitly described in terms of the secondary knowledge source. Instances from each set are then classified in a manner appropriate for the characteristics of the particular set. We present our methodology and outline a set of experiential results that demonstrate some advantages and some limitations of our approach. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
Clinical Decision Support Systems (CDSSs) need to disseminate expertise in formats that suit different end users and with functionality tuned to the context of assessment. This paper reports research into a method for designing and implementing knowledge structures that facilitate the required flexibility. A psychological model of expertise is represented using a series of formally specified and linked XML trees that capture increasing elements of the model, starting with hierarchical structuring, incorporating reasoning with uncertainty, and ending with delivering the final CDSS. The method was applied to the Galatean Risk and Safety Tool, GRiST, which is a web-based clinical decision support system (www.egrist.org) for assessing mental-health risks. Results of its clinical implementation demonstrate that the method can produce a system that is able to deliver expertise targetted and formatted for specific patient groups, different clinical disciplines, and alternative assessment settings. The approach may be useful for developing other real-world systems using human expertise and is currently being applied to a logistics domain. © 2013 Polish Information Processing Society.
Resumo:
This is the second of two linked papers exploring decision making in nursing. The first paper, 'Classifying clinical decision making: a unifying approach' investigated difficulties with applying a range of decision-making theories to nursing practice. This is due to the diversity of terminology and theoretical concepts used, which militate against nurses being able to compare the outcomes of decisions analysed within different frameworks. It is therefore problematic for nurses to assess how good their decisions are, and where improvements can be made. However, despite the range of nomenclature, it was argued that there are underlying similarities between all theories of decision processes and that these should be exposed through integration within a single explanatory framework. A proposed solution was to use a general model of psychological classification to clarify and compare terms, concepts and processes identified across the different theories. The unifying framework of classification was described and this paper operationalizes it to demonstrate how different approaches to clinical decision making can be re-interpreted as classification behaviour. Particular attention is focused on classification in nursing, and on re-evaluating heuristic reasoning, which has been particularly prone to theoretical and terminological confusion. Demonstrating similarities in how different disciplines make decisions should promote improved multidisciplinary collaboration and a weakening of clinical elitism, thereby enhancing organizational effectiveness in health care and nurses' professional status. This is particularly important as nurses' roles continue to expand to embrace elements of managerial, medical and therapeutic work. Analysing nurses' decisions as classification behaviour will also enhance clinical effectiveness, and assist in making nurses' expertise more visible. In addition, the classification framework explodes the myth that intuition, traditionally associated with nurses' decision making, is less rational and scientific than other approaches.
Resumo:
Incontinentia Pigmenti (IP, OMIM#308300) is a rare X-linked genomic disorder (about 1,400 cases) that affects the neuroectodermal tissue and Central Nervous System (CNS). The objective of this study was to describe the cognitive-behavioural profile in children in order to plan a clinical intervention to improve their quality of life. A total of 14 girls (age range: from 1 year and 2 months to 12 years and 10 months) with IP and the IKBKG/NEMO gene deletion were submitted to a cognitive assessment including intelligence scales, language and visuo-spatial competence tests, learning ability tests, and a behavioural assessment. Five girls had severe to mild intellectual deficiencies and the remaining nine had a normal neurodevelopment. Four girls were of school age and two of these showed no intellectual disability, but had specific disabilities in calculation and arithmetic reasoning. This is the first description of the cognitive-behavioural profile in relation to developmental age. We stress the importance of an early assessment of learning abilities in individuals with IP without intellectual deficiencies to prevent the onset of any such deficit.
Resumo:
Background
Medical students transitioning into professional practice feel underprepared to deal with the emotional complexities of real-life ethical situations. Simulation-based learning (SBL) may provide a safe environment for students to probe the boundaries of ethical encounters. Published studies of ethics simulation have not generated sufficiently deep accounts of student experience to inform pedagogy. The aim of this study was to understand students’ lived experiences as they engaged with the emotional challenges of managing clinical ethical dilemmas within a SBL environment.
Methods
This qualitative study was underpinned by an interpretivist epistemology. Eight senior medical students participated in an interprofessional ward-based SBL activity incorporating a series of ethically challenging encounters. Each student wore digital video glasses to capture point-of-view (PoV) film footage. Students were interviewed immediately after the simulation and the PoV footage played back to them. Interviews were transcribed verbatim. An interpretative phenomenological approach, using an established template analysis approach, was used to iteratively analyse the data.
Results
Four main themes emerged from the analysis: (1) ‘Authentic on all levels?’, (2)‘Letting the emotions flow’, (3) ‘Ethical alarm bells’ and (4) ‘Voices of children and ghosts’. Students recognised many explicit ethical dilemmas during the SBL activity but had difficulty navigating more subtle ethical and professional boundaries. In emotionally complex situations, instances of moral compromise were observed (such as telling an untruth). Some participants felt unable to raise concerns or challenge unethical behaviour within the scenarios due to prior negative undergraduate experiences.
Conclusions
This study provided deep insights into medical students’ immersive and embodied experiences of ethical reasoning during an authentic SBL activity. By layering on the human dimensions of ethical decision-making, students can understand their personal responses to emotion, complexity and interprofessional working. This could assist them in framing and observing appropriate ethical and professional boundaries and help smooth the transition into clinical practice.
Resumo:
Diagnostic errors are responsible for a significant number of adverse events. Logical reasoning and good decision-making skills are key factors in reducing such errors, but little emphasis has traditionally been placed on how these thought processes occur, and how errors could be minimised. In this article, we explore key cognitive ideas that underpin clinical decision making and suggest that by employing some simple strategies, physicians might be better able to understand how they make decisions and how the process might be optimised.
Resumo:
Critical thinking in learners is a goal of educators and professional organizations in nursing as well as other professions. However, few studies in nursing have examined the role of the important individual difference factors topic knowledge, individual interest, and general relational reasoning strategies in predicting critical thinking. In addition, most previous studies have used domain-general, standardized measures, with inconsistent results. Moreover, few studies have investigated critical thinking across multiple levels of experience. The major purpose of this study was to examine the degree to which topic knowledge, individual interest, and relational reasoning predict critical thinking in maternity nurses. For this study, 182 maternity nurses were recruited from national nursing listservs explicitly chosen to capture multiple levels of experience from prelicensure to very experienced nurses. The three independent measures included a domain-specific Topic Knowledge Assessment (TKA), consisting of 24 short-answer questions, a Professed and Engaged Interest Measure (PEIM), with 20 questions indicating level of interest and engagement in maternity nursing topics and activities, and the Test of Relational Reasoning (TORR), a graphical selected response measure with 32 items organized in scales corresponding to four forms of relational reasoning: analogy, anomaly, antithesis, and antinomy. The dependent measure was the Critical Thinking Task in Maternity Nursing (CT2MN), composed of a clinical case study providing cues with follow-up questions relating to nursing care. These questions align with the cognitive processes identified in a commonly-used definition of critical thinking in nursing. Reliable coding schemes for the measures were developed for this study. Key findings included a significant correlation between topic knowledge and individual interest. Further, the three individual difference factors explained a significant proportion of the variance in critical thinking with a large effect size. While topic knowledge was the strongest predictor of critical thinking performance, individual interest had a moderate significant effect, and relational reasoning had a small but significant effect. The findings suggest that these individual difference factors should be included in future studies of critical thinking in nursing. Implications for nursing education, research, and practice are discussed.
Resumo:
The authors present a proposal to develop intelligent assisted living environments for home based healthcare. These environments unite the chronical patient clinical history sematic representation with the ability of monitoring the living conditions and events recurring to a fully managed Semantic Web of Things (SWoT). Several levels of acquired knowledge and the case based reasoning that is possible by knowledge representation of the health-disease history and acquisition of the scientific evidence will deliver, through various voice based natural interfaces, the adequate support systems for disease auto management but prominently by activating the less differentiated caregiver for any specific need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators.
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.