935 resultados para Climate-based Daylight Metrics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main uncertainty in anthropogenic forcing of the Earth’s climate stems from pollution aerosols, particularly their ‘‘indirect effect’’ whereby aerosols modify cloud properties. We develop a new methodology to derive a measurement-based estimate using almost exclusively information from an Earth radiation budget instrument (CERES) and a radiometer (MODIS). We derive a statistical relationship between planetary albedo and cloud properties, and, further, between the cloud properties and column aerosol concentration. Combining these relationships with a data set of satellite-derived anthropogenic aerosol fraction, we estimate an anthropogenic radiative forcing of �-0.9 ± 0.4 Wm�-2 for the aerosol direct effect and of �-0.2 ± 0.1 Wm�-2 for the cloud albedo effect. Because of uncertainties in both satellite data and the method, the uncertainty of this result is likely larger than the values given here which correspond only to the quantifiable error estimates. The results nevertheless indicate that current global climate models may overestimate the cloud albedo effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Question: What are the correlations between the degree of drought stress and temperature, and the adoption of specific adaptive strategies by plants in the Mediterranean region? Location: 602 sites across the Mediterranean region. Method: We considered 12 plant morphological and phenological traits, and measured their abundance at the sites as trait scores obtained from pollen percentages. We conducted stepwise regression analyses of trait scores as a function of plant available moisture (α) and winter temperature (MTCO). Results: Patterns in the abundance for the plant traits we considered are clearly determined by α, MTCO or a combination of both. In addition, trends in leaf size, texture, thickness, pubescence and aromatic leaves and other plant level traits such as thorniness and aphylly, vary according to the life form (tree, shrub, forb), the leaf type (broad, needle) and phenology (evergreen, summer-green). Conclusions: Despite conducting this study based on pollen data we have identified ecologically plausible trends in the abundance of traits along climatic gradients. Plant traits other than the usual life form, leaf type and leaf phenology carry strong climatic signals. Generally, combinations of plant traits are more climatically diagnostic than individual traits. The qualitative and quantitative relationships between plant traits and climate parameters established here will help to provide an improved basis for modelling the impact of climate changes on vegetation and form a starting point for a global analysis of pollen-climate relationships

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

14C-dated pollen and lake-level data from Europe are used to assess the spatial patterns of climate change between 6000 yr BP and present, as simulated by the NCAR CCM1 (National Center for Atmospheric Research, Community Climate Model, version 1) in response to the change in the Earth’s orbital parameters during this perod. First, reconstructed 6000 yr BP values of bioclimate variables obtained from pollen and lake-level data with the constrained-analogue technique are compared with simulated values. Then a 6000 yr BP biome map obtained from pollen data with an objective biome reconstruction (biomization) technique is compared with BIOME model results derived from the same simulation. Data and simulations agree in some features: warmer-than-present growing seasons in N and C Europe allowed forests to extend further north and to higher elevations than today, and warmer winters in C and E Europe prevented boreal conifers from spreading west. More generally, however, the agreement is poor. Predominantly deciduous forest types in Fennoscandia imply warmer winters than the model allows. The model fails to simulate winters cold enough, or summers wet enough, to allow temperate deciduous forests their former extended distribution in S Europe, and it incorrectly simulates a much expanded area of steppe vegetation in SE Europe. Similar errors have also been noted in numerous 6000 yr BP simulations with prescribed modern sea surface temperatures. These errors are evidently not resolved by the inclusion of interactive sea-surface conditions in the CCM1. Accurate representation of mid-Holocene climates in Europe may require the inclusion of dynamical ocean–atmosphere and/or vegetation–atmosphere interactions that most palaeoclimate model simulations have so far disregarded.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds) and CO. When these ozone changes are used to calculate radiative forcing (RF) (and climate metrics such as the global warming potential (GWP) and global temperature-change potential (GTP)) there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane) concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia). We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field) are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3 times larger using the ensemble-mean fields than using the individual models to calculate the RF. The source of this effect is largely due to the construction of the input ozone fields, which overestimate the true ensemble spread. Hence, while the average of multi-model fields are normally appropriate for calculating mean RF, GWP and GTP, they are not a reliable method for calculating the uncertainty in these fields, and in general overestimate the uncertainty.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective public policy to mitigate climate change footprints should build on data-driven analysis of firm-level strategies. This article’s conceptual approach augments the resource-based view (RBV) of the firm and identifies investments in four firm-level resource domains (Governance, Information management, Systems, and Technology [GISTe]) to develop capabilities in climate change impact mitigation. The authors denote the resulting framework as the GISTe model, which frames their analysis and public policy recommendations. This research uses the 2008 Carbon Disclosure Project (CDP) database, with high-quality information on firm-level climate change strategies for 552 companies from North America and Europe. In contrast to the widely accepted myth that European firms are performing better than North American ones, the authors find a different result. Many firms, whether European or North American, do not just “talk” about climate change impact mitigation, but actually do “walk the talk.” European firms appear to be better than their North American counterparts in “walk I,” denoting attention to governance, information management, and systems. But when it comes down to “walk II,” meaning actual Technology-related investments, North American firms’ performance is equal or superior to that of the European companies. The authors formulate public policy recommendations to accelerate firm-level, sector-level, and cluster-level implementation of climate change strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper provides an interdisciplinary perspective on mine reclamation in forested areas of Ghana, a country characterised by conflicts between mining and forest conservation. A comparison was made between above ground biomass (AGB) and soil organic carbon (SOC) content from two reclaimed mine sites and adjacent undisturbed forest. Findings suggest that on decadal timescales, reclaimed mine sites contain approximately 40% of the total carbon and 10% the AGB carbon of undisturbed forest. This raises questions regarding the potential for decommissioning mine sites to provide forestry-based legacies. Such a move could deliver a host of benefits, including improving the longevity and success of reclamation, mitigating climate change and delivering corollary enumeration for local communities under carbon trading schemes. A discussion of the antecedents and challenges associated with establishing forest-legacies highlights the risk of neglecting the participation and heterogeneity of legitimate local representatives, which threatens the equity of potential benefits and sustainability of projects. Despite these risks, implementing pilot projects could help to address the lack of transparency and data which currently characterises mine reclamation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961–2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño–Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heavy precipitation affected Central Europe in May/June 2013, triggering damaging floods both on the Danube and the Elbe rivers. Based on a modelling approach with COSMO-CLM, moisture fluxes, backward trajectories, cyclone tracks and precipitation fields are evaluated for the relevant time period 30 May–2 June 2013. We identify potential moisture sources and quantify their contribution to the flood event focusing on the Danube basin through sensitivity experiments: Control simulations are performed with undisturbed ERA-Interim boundary conditions, while multiple sensitivity experiments are driven with modified evaporation characteristics over selected marine and land areas. Two relevant cyclones are identified both in reanalysis and in our simulations, which moved counter-clockwise in a retrograde path from Southeastern Europe over Eastern Europe towards the northern slopes of the Alps. The control simulations represent the synoptic evolution of the event reasonably well. The evolution of the precipitation event in the control simulations shows some differences in terms of its spatial and temporal characteristics compared to observations. The main precipitation event can be separated into two phases concerning the moisture sources. Our modelling results provide evidence that the two main sources contributing to the event were the continental evapotranspiration (moisture recycling; both phases) and the North Atlantic Ocean (first phase only). The Mediterranean Sea played only a minor role as a moisture source. This study confirms the importance of continental moisture recycling for heavy precipitation events over Central Europe during the summer half year.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)