931 resultados para Classification of AMPS
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
Skin, arteries and nerves of the upper extremities can be affected by vibration exposure. Recent advances in skin and vascular biology as well as new investigative methods, have shown that neurovascular symptoms may be due to different vascular and neurological disorders which should be differentiated if proper management is to be evaluated. Three types of vascular disorder can be observed in the vibration white finger: digital organic microangiopathy, a digital vasospastic phenomenon and arterial thrombosis in the upper extremities. An imbalance between endothelin-1 and calcitonin-gene-related peptide is probably responsible for the vasospastic phenomenon. Moreover, paresthesiae can be due to either a diffuse vibration neuropathy or a carpal tunnel syndrome. A precise diagnosis is then necessary to adapt the treatment to individual cases. A classification describing the type and severity of the vascular lesions is presented. Asymptomatic lesions are included for adequate epidemiological studies and risk assessment of vibrating tools. Monitoring of vibration exposed workers should include not only a questionnaire about symptoms, but also a clinical evaluation including diagnostic tests for the screening of early asymptomatic neurovascular injuries.
Resumo:
In this paper, we present and apply a semisupervised support vector machine based on cluster kernels for the problem of very high resolution image classification. In the proposed setting, a base kernel working with labeled samples only is deformed by a likelihood kernel encoding similarities between unlabeled examples. The resulting kernel is used to train a standard support vector machine (SVM) classifier. Experiments carried out on very high resolution (VHR) multispectral and hyperspectral images using very few labeled examples show the relevancy of the method in the context of urban image classification. Its simplicity and the small number of parameters involved make it versatile and workable by unexperimented users.
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
To classify mosquito species based on common features of their habitats, samples were obtained fortnightly between June 2001-October 2003 in the subtropical province of Chaco, Argentina. Data on the type of larval habitat, nature of the habitat (artificial or natural), size, depth, location related to sunlight, distance to the neighbouring houses, type of substrate, organic material, vegetation and algae type and their presence were collected. Data on the permanence, temperature, pH, turbidity, colour, odour and movement of the larval habitat's water were also collected. From the cluster analysis, three groups of species associated by their degree of habitat similarity were obtained and are listed below. Group 1 consisted of Aedes aegypti. Group 2 consisted of Culex imitator, Culex davisi, Wyeomyia muehlensi and Toxorhynchites haemorrhoidalis separatus. Within group 3, two subgroups are distinguished: A (Psorophora ferox, Psorophora cyanescens, Psorophora varinervis, Psorophora confinnis, Psorophora cingulata, Ochlerotatus hastatus-oligopistus, Ochlerotatus serratus, Ochlerotatus scapularis, Culex intrincatus, Culex quinquefasciatus, Culex pilosus, Ochlerotatus albifasciatus, Culex bidens) and B (Culex maxi, Culex eduardoi, Culex chidesteri, Uranotaenia lowii, Uranotaenia pulcherrima, Anopheles neomaculipalpus, Anopheles triannulatus, Anopheles albitarsis, Uranotaenia apicalis, Mansonia humeralis and Aedeomyia squamipennis). Principal component analysis indicates that the size of the larval habitats and the presence of aquatic vegetation are the main characteristics that explain the variation among different species. In contrast, water permanence is second in importance. Water temperature, pH and the type of larval habitat are less important in explaining the clustering of species.
Resumo:
The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.
Resumo:
In 2009, the World Health Organization (WHO) issued a new guideline that stratifies dengue-affected patients into severe (SD) and non-severe dengue (NSD) (with or without warning signs). To evaluate the new recommendations, we completed a retrospective cross-sectional study of the dengue haemorrhagic fever (DHF) cases reported during an outbreak in 2011 in northeastern Brazil. We investigated 84 suspected DHF patients, including 45 (53.6%) males and 39 (46.4%) females. The ages of the patients ranged from five-83 years and the median age was 29. According to the DHF/dengue shock syndrome classification, 53 (63.1%) patients were classified as having dengue fever and 31 (36.9%) as having DHF. According to the 2009 WHO classification, 32 (38.1%) patients were grouped as having NSD [4 (4.8%) without warning signs and 28 (33.3%) with warning signs] and 52 (61.9%) as having SD. A better performance of the revised classification in the detection of severe clinical manifestations allows for an improved detection of patients with SD and may reduce deaths. The revised classification will not only facilitate effective screening and patient management, but will also enable the collection of standardised surveillance data for future epidemiological and clinical studies.
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours
Resumo:
BACKGROUND: Inherited ichthyoses belong to a large, clinically and etiologically heterogeneous group of mendelian disorders of cornification, typically involving the entire integument. Over the recent years, much progress has been made defining their molecular causes. However, there is no internationally accepted classification and terminology. OBJECTIVE: We sought to establish a consensus for the nomenclature and classification of inherited ichthyoses. METHODS: The classification project started at the First World Conference on Ichthyosis in 2007. A large international network of expert clinicians, skin pathologists, and geneticists entertained an interactive dialogue over 2 years, eventually leading to the First Ichthyosis Consensus Conference held in Sorèze, France, on January 23 and 24, 2009, where subcommittees on different issues proposed terminology that was debated until consensus was reached. RESULTS: It was agreed that currently the nosology should remain clinically based. "Syndromic" versus "nonsyndromic" forms provide a useful major subdivision. Several clinical terms and controversial disease names have been redefined: eg, the group caused by keratin mutations is referred to by the umbrella term, "keratinopathic ichthyosis"-under which are included epidermolytic ichthyosis, superficial epidermolytic ichthyosis, and ichthyosis Curth-Macklin. "Autosomal recessive congenital ichthyosis" is proposed as an umbrella term for the harlequin ichthyosis, lamellar ichthyosis, and the congenital ichthyosiform erythroderma group. LIMITATIONS: As more becomes known about these diseases in the future, modifications will be needed. CONCLUSION: We have achieved an international consensus for the classification of inherited ichthyosis that should be useful for all clinicians and can serve as reference point for future research.
Resumo:
The 2008 Data Fusion Contest organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee deals with the classification of high-resolution hyperspectral data from an urban area. Unlike in the previous issues of the contest, the goal was not only to identify the best algorithm but also to provide a collaborative effort: The decision fusion of the best individual algorithms was aiming at further improving the classification performances, and the best algorithms were ranked according to their relative contribution to the decision fusion. This paper presents the five awarded algorithms and the conclusions of the contest, stressing the importance of decision fusion, dimension reduction, and supervised classification methods, such as neural networks and support vector machines.
Resumo:
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.