982 resultados para Classificação de imagens
Resumo:
Com o advento dos sensores hiperespectrais se tornou possível em sensoriamento remoto, uma serie de diferentes aplicações. Uma delas, é a possibilidade de se discriminar classes com comportamentos espectrais quase idênticas. Porém um dos principais problemas encontrados quando se trabalha com dados de alta dimensionalidade, é a dificuldade em estimar os inúmeros parâmetros que se fazem necessários. Em situações reais é comum não se ter disponibilidade de tamanho de amostra suficiente, por exemplo, para se estimar a matriz de covariâncias de forma confiável. O sensor AVIRIS fornece uma riqueza de informações sobre os alvos, são 224 bandas cobrindo o espectro eletromagnético, o que permite a observação do comportamento espectral dos alvos de forma muito detalhada. No entanto surge a dificuldade de se contar com uma amostra suficiente para se estimar a matriz de covariâncias de uma determinada classe quando trabalhamos com dados do sensor AVIRIS, para se ter uma idéia é preciso estimar 25.200 parâmetros somente na matriz de covariâncias, o que necessitaria de uma amostra praticamente impraticável na realidade. Surge então a necessidade de se buscar formas de redução da dimensionalidade, sem que haja perda significativa de informação. Esse tipo de problema vem sendo alvo de inúmeros estudos na comunidade acadêmica internacional. Em nosso trabalho pretendemos sugerir a redução da dimensionalidade através do uso de uma ferramenta da geoestatística denominada semivariograma. Investigaremos se os parâmetros calculados para determinadas partições do transecto de bandas do sensor AVIRIS são capazes de gerar valores médios distintos para classes com comportamentos espectrais muito semelhantes, o que por sua vez, facilitaria a classificação/discriminação destas classes.
Resumo:
A textura é um atributo ainda pouco utilizado no reconhecimento automático de cenas naturais em sensoriamento remoto, já que ela advém da sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil a sua quantificação. A morfologia matemática, através de operações como erosão, dilatação e abertura, permite decompor uma imagem em elementos fundamentais, as primitivas texturais. As primitivas texturais apresentam diversas dimensões, sendo possível associar um conjunto de primitivas com dimensões semelhantes, em uma determinada classe textural. O processo de classificação textural quantifica as primitivas texturais, extrai as distribuições das dimensões das mesmas e separa as diferentes distribuições por meio de um classificador de máxima-verossimilhança gaussiana. O resultado final é uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original.
Resumo:
Os recentes avanços na tecnologia de sensores tem disponibilizado imagens em alta dimensionalidade para fins de sensoriamento Remoto. Análise e interpretação dos dados provenientes desta nova geração de sensores apresenta novas possibilidades e também novos desafios. Neste contexto,um dos maiores desafios consiste na estimação dos parâmetros em um classificador estatístico utilizando-se um número limitado de amostras de treinamento.Neste estudo,propõe-se uma nova metodologia de extração de feições para a redução da dimensionalidadedos dados em imagens hiperespectrais. Essa metodologia proposta é de fácil implementação e também eficiente do ponto de vista computacional.A hipótese básica consiste em assumir que a curva de resposta espectral do pixel, definida no espaço espectral, pelos contadores digitais (CD's) das bandas espectrais disponíveis, pode ser substituída por um número menor de estatísticas, descrevendo as principais característicasda resposta espectral dos pixels. Espera-se que este procedimento possa ser realizado sem uma perda significativa de informação. Os CD's em cada banda espectral são utilizados para o cálculo de um número reduzido de estatísticas que os substituirão no classificador. Propõe-se que toda a curva seja particionada em segmentos, cada segmento sendo então representado pela respectiva média e variância dos CD's. Propõem-se três algoritmos para segmentação da curva de resposta espectral dos pixels. O primeiro utiliza um procedimento muito simples. Utilizam-se segmentos de comprimento constante, isto é, não se faz nenhuma tentativa para ajustar o comprimento de cada segmento às características da curva espectral considerada. Os outros dois implementam um método que permite comprimentos variáveis para cada segmento,onde o comprimentodos segmentos ao longo da curva de resposta espectral é ajustado seqüencialmente.Um inconveniente neste procedimento está ligado ao fato de que uma vez selecionadauma partição, esta não pode ser alterada, tornando os algoritmos sub-ótimos. Realizam-se experimentos com um classificador paramétrico utilizando-se uma imagem do sensor AVIRIS. Obtiveram-se resultados animadores em termos de acurácia da classificação,sugerindo a eficácia dos algoritmos propostos.
Resumo:
Remote sensing is one technology of extreme importance, allowing capture of data from the Earth's surface that are used with various purposes, including, environmental monitoring, tracking usage of natural resources, geological prospecting and monitoring of disasters. One of the main applications of remote sensing is the generation of thematic maps and subsequent survey of areas from images generated by orbital or sub-orbital sensors. Pattern classification methods are used in the implementation of computational routines to automate this activity. Artificial neural networks present themselves as viable alternatives to traditional statistical classifiers, mainly for applications whose data show high dimensionality as those from hyperspectral sensors. This work main goal is to develop a classiffier based on neural networks radial basis function and Growing Neural Gas, which presents some advantages over using individual neural networks. The main idea is to use Growing Neural Gas's incremental characteristics to determine the radial basis function network's quantity and choice of centers in order to obtain a highly effective classiffier. To demonstrate the performance of the classiffier three studies case are presented along with the results.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Os principais objetivos deste trabalho são propor um algoritmo eficiente e o mais automático possível para estimar o que está coberto por regiões de nuvens e sombras em imagens de satélite; e um índice de confiabilidade, que seja aplicado previamente à imagem, visando medir a viabilidade da estimação das regiões cobertas pelos componentes atmosféricos usando tal algoritmo. A motivação vem dos problemas causados por esses elementos, entre eles: dificultam a identificação de objetos de imagem, prejudicam o monitoramento urbano e ambiental, e desfavorecem etapas cruciais do processamento digital de imagens para extrair informações ao usuário, como segmentação e classificação. Através de uma abordagem híbrida, é proposto um método para decompor regiões usando um filtro passa-baixas não-linear de mediana, a fim de mapear as regiões de estrutura (homogêneas), como vegetação, e de textura (heterogêneas), como áreas urbanas, na imagem. Nessas áreas, foram aplicados os métodos de restauração Inpainting por suavização baseado em Transformada Cosseno Discreta (DCT), e Síntese de Textura baseada em modelos, respectivamente. É importante salientar que as técnicas foram modificadas para serem capazes de trabalhar com imagens de características peculiares que são obtidas por meio de sensores de satélite, como por exemplo, as grandes dimensões e a alta variação espectral. Já o índice de confiabilidade, tem como objetivo analisar a imagem que contém as interferências atmosféricas e daí estimar o quão confiável será a redefinição com base no percentual de cobertura de nuvens sobre as regiões de textura e estrutura. Tal índice é composto pela combinação do resultado de algoritmos supervisionados e não-supervisionados envolvendo 3 métricas: Exatidão Global Média (EGM), Medida De Similaridade Estrutural (SSIM) e Confiança Média Dos Pixels (CM). Finalmente, verificou-se a eficácia destas metodologias através de uma avaliação quantitativa (proporcionada pelo índice) e qualitativa (pelas imagens resultantes do processamento), mostrando ser possível a aplicação das técnicas para solucionar os problemas que motivaram a realização deste trabalho.