983 resultados para Classical control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wernicke’s aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and semantic aphasia) and (b) an ongoing debate about the underlying causes of comprehension impairment in WA. By directly comparing these three patient groups for the first time, we demonstrate that the comprehension impairment in Wernicke’s aphasia is best accounted for by dual deficits in acoustic-phonological analysis (associated with pSTG) and semantic cognition (associated with pMTG and angular gyrus). The WA group were impaired on both nonverbal and verbal comprehension assessments consistent with a generalised semantic impairment. This semantic deficit was most similar in nature to that of the semantic aphasia group suggestive of a disruption to semantic control processes. In addition, only the WA group showed a strong effect of input modality on comprehension, with accuracy decreasing considerably as acoustic-phonological requirements increased. These results deviate from traditional accounts which emphasise a single impairment and, instead, implicate two deficits underlying the comprehension disorder in WA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical evidence suggests that a persistent search for solutions for chronic pain may bring along costs at the cognitive, affective, and behavioral level. Specifically, attempts to control pain may fuel hypervigilance and prioritize attention towards pain-related information. This hypothesis was investigated in an experiment with 41 healthy volunteers. Prioritization of attention towards a signal for pain was measured using an adaptation of a visual search paradigm in which participants had to search for a target presented in a varying number of colored circles. One of these colors (Conditioned Stimulus) became a signal for pain (Unconditioned Stimulus: electrocutaneous stimulus at tolerance level) using a classical conditioning procedure. Intermixed with the visual search task, participants also performed another task. In the pain-control group, participants were informed that correct and fast responses on trials of this second task would result in an avoidance of the Unconditioned Stimulus. In the comparison group, performance on the second task was not instrumental in controlling pain. Results showed that in the pain-control group, attention was more prioritized towards the Conditioned Stimulus than in the comparison group. The theoretical and clinical implications of these results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of magnetic fluids in controlling rod vibrations is investigated. A prototype of ferrofluid vibration damper is designed and experimentally set up based on the principle of anti-resonance. The efficiency of this damping system is verified in experiments and well explained with classical equations of motion. The improvement of the present system towards active control of rod vibration is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In stressed power systems with large induction machine component, there exist undamped electromechanical modes and unstable montonic voltage modes. This article proposes a sequential design of an excitation controller and a power system stabiliser (PSS) to stabilise the system. The operating region, with induction machines in stressed power systems, is often not captured using a linearisation around an operating point, and to alleviate this situation a robust controller is designed which guaruntees stable operation in a large region of operation. A minimax linear quadratic Gaussian design is used for the design of the supplementary control to automatic voltage regulators, and a classical PSS structure is used to damp electromechanical oscillations. The novelty of this work is in proposing a method to capture the unmodelled nonlinear dynamics as uncertainty in the design of the robust controller. Tight bounds on the uncertainty are obtained using this method which enables high-performance controllers. An IEEE benchmark test system has been used to demonstrate the performance of the designed controller

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. METHODS: Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). RESULTS: The velocity of movement on the Posturomed improved by 28.3 (36.1%) (p<0.001) in the VIB-group and 18.5 (31.5%) (p<0.001) in the BAL-group by the end of the nine-month intervention period, but no differences were seen between the two groups (p=0.45). Balance tests performed on the Leonardo device did not show any significantly different responses between the two groups after nine months (p≥0.09). CONCLUSIONS: Strength training combined with either proprioceptive training or whole-body vibration was associated with improvements in some, but not all, measures of postural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract—Nowadays, classical washout filters are extensively used in commercial motion simulators. Even though there are several advantages for classical washout filters, such as short processing time, simplicity and ease of adjustment, they have several shortcomings. The main disadvantage is the fixed scheme and parameters of the classical washout filter cause inflexibility of the structure and thus the resulting simulator fails to suit all circumstances. Moreover, it is a conservative approach and the platform cannot be fully exploited. The aim of this research is to present a fuzzy logic approach and take the human perception error into account in the classical motion cueing algorithm, in order to improve both the physical limits of restitution and realistic human sensations. The fuzzy compensator signal is applied to adjust the filtered signals on the longitudinal and rotational channels online, as well as the tilt coordination to minimize the vestibular sensation error below the human perception threshold. The results indicate that the proposed fuzzy logic controllers significantly minimize the drawbacks of having fixed parameters and conservativeness in the classical washout filter. In addition, the performance of motion cueing algorithm and human perception for most occasions is improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart material technology has become an area of increasing interest for the development of lighter and stronger structures that are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains is a very important issue. For that purpose, smart material modeling, modal analysis methods, and control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hill's equations-even in the linear original version are a describer of phenomenon having chaotic flavor, giving sometimes very unusual situations. The theory of the so called intervals of instability in the equation provides the precise description for most of these phenomena. Considerations on nonlinearities into the Hill's equation is a quite recent task. The linearized version for almost of these systems it reduces to the Hill's classical linear one. In this paper, some indicative facts are pointed out on the possibility of having the linear system stabilizable and/or exactly controllable. As consequence of such an approach we get results having strong classical aspects, like the one talking about location of parameters in intervals of stability. A result for nonlinear proper periodic controls, is considered too. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid Cotesia flavipes, the decrease of D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Recently, the native tachinid fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in the success. Here, we investigated the spatial and temporal population interactions between C. flavipes and the tachinid flies, and provide a critical analysis of the biological control practice, focusing on the undesirable effects of introductions of exotic natural enemies. To investigate these questions, a large data set comprising information from two sugarcane mills located in the state of São Paulo, Brazil (Barra and Sao Joao Mills), was analysed. Analysis of the correlation between C. flavipes and tachinid fly population densities through time revealed that such populations were inversely correlated in the Sao Joao Mill and not correlated in the Barra Mill. Logistic regressions were computed to investigate the proportion of sites occupied by the parasitoid species at both mills as a function of time. An increasing trend in the proportion of sites occupied by C. flavipes was observed, with a concomitant decrease of the sites occupied by tachinid flies. This effect was more intense in the Sao Joao Mill. Thus, there is a convincing possibility that constant releases of C. flavipes decreased the tachinid fly populations, resulting in an undesirable effect of biological control practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leaf beetle Metriona elatior from Brazil-Argentina was screened in the Florida (USA) State quarantine facility as a potential biological control agent of tropical soda apple, Solanum viarum, a recently arrived weed species. Multiple-choice host-specificity tests were conducted in small cages (60 cm x 60 cm x 60 cm) using 95 plant species in 29 families. Adults fed heavily on the main target weed (S. viarum), and on turkeyberry, Solanum torvum (noxious weed of Asiatic origin); fed moderately on red soda apple, Solanum capsicoides (weed of South American origin), and eggplant, Solanum melongena (economic crop); and fed lightly on aquatic soda apple, Solanum tampicense (weed of Mexican-Caribbean-Central American origin), and on silverleaf nightshade, Solanum elaeagnifolium (native weed widely distributed). M. elatior adults laid 84 to 97% of their egg masses on S. viarum, and 3 to 16% on S. melongena. Non-choice host-specificity tests were also conducted in quarantine in which M. elatior adults and neonate larvae were exposed to 17 and 19 plant species, respectively. Tests with the neonates indicate that this insect was able to complete its development on S. viarum, S. torvum, S. melongena, and S. capsicoides. Although some adult feeding and oviposition occurred on S. melongena in quarantine on potted plants in small cages, no feeding or oviposition by M. elatior was observed in field experiments conducted in Brazil. Surveys in unsprayed S. melongena fields in Argentina and Brazil indicated that M. elatior is not a pest of S. melongena in South America. The evidence obtained from the South-American field surveys, Brazil open-field experiments, and Florida quarantine host specificity tests indicate that M. elatior causes significant feeding damage to S. viarum, and does not represent a threat to S. melongena crops in the USA. Therefore an application for permission to release M. elatior against S. viarum in the USA was submitted in October 1998.