972 resultados para Clareamento dental - Efeitos
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated the effect of physical and chemical activation on the speed of penetration of hydrogen peroxide bleaching agents present in different concentrations through the enamel and dentin. One hundred and twenty bovine incisors were used, which were obtained enamel/dentin discs of the buccal surface, with 6 mm in diameter. The samples were divided into six groups: G1 - Hydrogen Peroxide Gel 20%, G2 - Hydrogen Peroxide Gel 20% with light activation, G3 - Hydrogen Peroxide Gel 20% with Manganese Gluconate; G4 - Hydrogen Peroxide Gel 35%; G5 - Hydrogen Peroxide Gel 35% with the light activation and G6 - Hydrogen Peroxide Gel 35% with Manganese Gluconate. The specimens were placed in a transparent support on which there was a substance sensitive to hydrogen peroxide immediately below and in contact with the specimen. After the procedures for applying the gel for each group, one video camera was positioned and operated to monitor the time of penetration of peroxide in each specimen. The recording ended after changing the color of the fluid revealed in all specimens and times were noted for comparison. ANOVA analysis showed that concentration and type of activation of bleaching gel significantly influenced the diffusion time of hydrogen peroxide (P 0.05). 35% hydrogen peroxide showed the lowest diffusion times compared to the groups with 20% hydrogen peroxide gel. The light activation of hydrogen peroxide decrease significantly the diffusion time compared to chemical activation. The highest diffusion time was obtained with 20% hydrogen peroxide chemically activated. The diffusion time of hydrogen peroxide was dependent on activation and concentration of hydrogen peroxide. The higher concentration of hydrogen peroxide diffused through dental tissues more quickly
Resumo:
Tooth bleaching is a treatment modality that raises great interest, due to the important role played by aesthetics in current life style. To perform such procedure, nowadays, there are several bleaching substances at several concentrations, as well as, diverse clinical techniques. When suggesting this procedure, the dentist should take into consideration several factors related to the patient to determine which will be the most appropriate technique/material combination for solving the clinical problem. The procedure indication should not only be based on the expectations exhibited by the patient, but also on respecting the biological principles to maintain the integrity of both the endodontic and periodontal tissues.
Resumo:
The reestablishment of a harmonious smile through dental ceramics, when properly conducted and with specific indications, can achieve extremely predictable results. For aesthetic and functional rehabilitation, many ceramic materials can be used such as zirconia, leucite, alumina, feldspar, and lithium disilicate. Among these materials the lithium disilicate stands out due to the following characteristics: its resistance to wear, to chemical attack, high temperatures and oxidation; low electrical conductivity; near zero thermal expansion; good optical properties and biocompatibility with periodontal; excellent esthetics; color stability and reinforcement of tooth structure. The indications for the use of lithium disilicate are not limited to multiple facets of teeth in cases where there was no favorable response to tooth whitening, and also comprehend teeth with multiple restorations, diastema closure, shape alteration, and dental contouring, replacement of missing or fractured teeth, among others. The versatility of lithium disilicate ceramics allows its utilization in several clinical situations. The concomitant use of lithium disilicate for veneers and over metal has satisfactory aesthetic results, as reported in the present studying cases that require both aesthetics and resistance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The pigmentation of indirect composite resins has been one of the most common reasons that lead the restorative treatment to failure. The purpose of this study was to investigate the effect of different solutions on color stability of indirect composite resins. Five brands of indirect composite resins were tested: Adoro, Resilab, Cristobal, Sinfony and Epricord. The samples were immerged in eleven solutions (n=10): common liquid foods (coke soft drink, red wine, coffee and orange juice), mounthrinses (Listerine, Oral-B, Colgate Plax and Periogard) and bleaching agents (carbamide peroxide 16%, 7.5% and hydrogen peroxide 38%) and artificial saliva (control group). The color was measured by a spectrophotometer before and after 7, 14 and 21 days of immersion in common liquid foods, after 12, 24, 36 and 60 hours of immersion in mounthrinses and after 7 and 14 days of immersion in bleaching agents. The Cristobal and Adoro resins showed highest values of ΔE statistically significant compared to the others resin brands. Adoro’s ΔE values changed significantly after the immersion process in red wine and coffee and also between periods measured. The resins Cristobal and Sinfony showed the highest values of ΔE after the immersion process in Listerine with difference statistically significant in comparison to control group. Besides, there was difference statistically significant of the ΔE values for Cristobal after immersion in hydrogen peroxide 7,5% in comparison to control group. It can be conclude that all the solutions promoted color change on the indirect composite resins. However, ΔE values are whitin the values clinically acceptable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study was to evaluate the effect of adding calcium ions and fluoride in the formulation of a whitening gel 35% hydrogen peroxide in its penetration through the dental structure, whitening efficacy and surface hardness of dental enamel. 80 teeth bovine incisors were used, which were obtained enamel and dentin disks of the buccal surface with 6mm diameter and 2mm thick (1 mm of enamel and dentin 1mm). The samples were divided into four groups stratified according to the protective substance / remineralizing added to the gel of hydrogen peroxide 35%: Group Ca - Calcium gluconate 0.5%; Group F - Sodium fluoride 0.2%; Group Ca + F - Calcium gluconate 0.5% and Sodium Fluoride 0.2%; Control group - no substance was added. The initial color of the samples and the hardness of the enamel were measured before the bleaching procedures. The specimens from each group were placed on a metallic support on which there was a simulated pulp chamber, which was filled with acetate buffer to collect and stabilize the penetrated peroxide. The respective bleaching treatments were applied 3 times, total of 30 minutes of application. The amount of peroxide which passed through the samples was determined by absorbance spectrophotometry. The hardness of the samples was measured immediately after bleaching. Next, the samples were immersed in artificial saliva for 7 days, after which the final color was evaluated. Data were statistically analyzed adopting a 5% significance level
Resumo:
The objective of this study was to evaluate the effect of adding calcium ions and fluoride in the formulation of a whitening gel 35% hydrogen peroxide in its penetration through the dental structure, whitening efficacy and surface hardness of dental enamel. 80 teeth bovine incisors were used, which were obtained enamel and dentin disks of the buccal surface with 6mm diameter and 2mm thick (1 mm of enamel and dentin 1mm). The samples were divided into four groups stratified according to the protective substance / remineralizing added to the gel of hydrogen peroxide 35%: Group Ca - Calcium gluconate 0.5%; Group F - Sodium fluoride 0.2%; Group Ca + F - Calcium gluconate 0.5% and Sodium Fluoride 0.2%; Control group - no substance was added. The initial color of the samples and the hardness of the enamel were measured before the bleaching procedures. The specimens from each group were placed on a metallic support on which there was a simulated pulp chamber, which was filled with acetate buffer to collect and stabilize the penetrated peroxide. The respective bleaching treatments were applied 3 times, total of 30 minutes of application. The amount of peroxide which passed through the samples was determined by absorbance spectrophotometry. The hardness of the samples was measured immediately after bleaching. Next, the samples were immersed in artificial saliva for 7 days, after which the final color was evaluated. Data were statistically analyzed adopting a 5% significance level