933 resultados para Citrus nematode
Resumo:
The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.
Resumo:
p.71-81
Valoración económica productiva de tres sistemas de riego localizado en naranjo (Citrus sinensis L.)
Resumo:
p.33-39
Resumo:
p.293-298
Resumo:
The nematode/copepod ratio is critically examined with a view to adding some precision to its proposed use in pollution ecology. At two unpolluted intertidal sites, differing markedly in sediment grade, the metabolic requirements of copepods are shown to be equivalent to the requirements of that fraction of the nematode population which feeds in the same way. The partitioning of this total energy requirement among individuals depends on the distribution of individual metabolic body sizes and the relative rates of metabolism. The distribution of body sizes is constrained by the sediment granulometry, which affects nematodes and copepods differently. These considerations enable precise predictions of the nematode/copepod ratios expected in unpolluted situations, against which observed ratios can be compared.
Resumo:
Measurements of population growth, generation time, fecundity and respiration in laboratory culture have been made, in relation to temperature and salinity, for the nematode Diplolaimelloides bruciei Hopper, a species normally associated with decayed material of the marsh grass Spartina. The intrinsic rate of increase (r) is high: it is related to temperature between 5° and 25°C by a sigmoid function which is steepest between 10° and 15°C, and is maximum at 26‰ salinity. Generation time is related to temperature by a power function and is shortest at 26‰ salinity. The effect of temperature on generation time is consistent with other data for marine nematodes, and the steep slope of r against temperature is largely due to the marked effect of temperature on fecundity. A sex ratio of 2:1 in favour of males is maintained regardless of culture conditions or population density. Respiration increases exponentially with temperature between 5° and 25°C, with a very high Q10 (3.94), but is not affected by salinity. At 30°C respiration is no higher than at 25°C. A high and relatively stable production efficiency (P/A) is maintained between 10 and 30°C with a maximum of 87% at 15°C; there is a stable reproductive effort (Pr/A) of about 10%. At 5°C both these ratios are zero. Data for the harpacticoid copepod Tachidius discipes, derived from the literature, show that this too has a high and stable production efficiency, which may be a characteristic of meiofaunal species in general, but in this species efficiency is relatively high at 5°C. Many features of the energy balance in D. bruciei can be related to an opportunistic mode of life.