966 resultados para Choice under uncertainty
Resumo:
Se analizan diferentes alternativas para la financiación de la educación superior, teniendo en cuenta que la presencia de fallas de mercado -tanto por el lado de la demanda como por el de la oferta- hace de éste un sector muy particular. Las primeras se relacionan con las decisiones privadas en términos de educación de la población estudiantil, y las segundas con las asimetrías de información que caracterizan el lado de la oferta en el financiamiento de la educación. El documento hace una revisión de literatura académica y de algunas experiencias internacionales sobre las diferentes fuentes de financiación en este sector, así como sus potenciales efectos sobre ciertas variables. Así, esta revisión arroja luces sobre las alternativas para el caso Colombiano.
Resumo:
Este documento es el resultado de una investigación bajo el enfoque de Finanzas Corporativas del Comportamiento, disciplina relevante en el mundo financiero desde el 2002 y que hasta el momento poco se ha investigado en Colombia. Esta difiere del supuesto tradicional de la racionalidad de los individuos en la toma de decisiones financieras, ya que pueden ser influenciadas por sesgos cognitivos y emocionales que la teoría ortodoxa no tiene en cuenta en sus supuestos. Esta investigación busca indagar, desde el punto de vista conceptual y mediante el análisis de resultados de estudio de campo con operadores del mercado bursátil colombiano, sobre la posible presencia de elementos comportamentales en las decisiones de inversión. Los sesgos que se evaluaron fueron: disonancia cognitiva, heurístico de disponibilidad y sesgo de confirmación. Para la recolección de fuentes primarias, una encuesta fue enviada a los operadores Colombianos, categorizados en operadores con experiencia y operadores jóvenes. Después del filtro, 142 encuestas fueron seleccionadas para el análisis. Los principales hallazgos fueron que los jóvenes son más propensos a experimentar disonancia cognitiva y heurístico de disponibilidad y en ambas categorías, los sesgos analizados influencian medianamente la toma de decisiones de inversión.
Resumo:
In this article, we illustrate experimentally an important consequence of the stochastic component in choice behaviour which has not been acknowledged so far. Namely, its potential to produce ‘regression to the mean’ (RTM) effects. We employ a novel approach to individual choice under risk, based on repeated multiple-lottery choices (i.e. choices among many lotteries), to show how the high degree of stochastic variability present in individual decisions can distort crucially certain results through RTM effects. We demonstrate the point in the context of a social comparison experiment.
Resumo:
We propose first, a simple task for the eliciting attitudes toward risky choice, the SGG lottery-panel task, which consists in a series of lotteries constructed to compensate riskier options with higher risk-return trade-offs. Using Principal Component Analysis technique, we show that the SGG lottery-panel task is capable of capturing two dimensions of individual risky decision making i.e. subjects’ average risk taking and their sensitivity towards variations in risk-return. From the results of a large experimental dataset, we confirm that the task systematically captures a number of regularities such as: A tendency to risk averse behavior (only around 10% of choices are compatible with risk neutrality); An attraction to certain payoffs compared to low risk lotteries, compatible with over-(under-) weighting of small (large) probabilities predicted in PT and; Gender differences, i.e. males being consistently less risk averse than females but both genders being similarly responsive to the increases in risk-premium. Another interesting result is that in hypothetical choices most individuals increase their risk taking responding to the increase in return to risk, as predicted by PT, while across panels with real rewards we see even more changes, but opposite to the expected pattern of riskier choices for higher risk-returns. Therefore, we conclude from our data that an “economic anomaly” emerges in the real reward choices opposite to the hypothetical choices. These findings are in line with Camerer's (1995) view that although in many domains, paid subjects probably do exert extra mental effort which improves their performance, choice over money gambles is not likely to be a domain in which effort will improve adherence to rational axioms (p. 635). Finally, we demonstrate that both dimensions of risk attitudes, average risk taking and sensitivity towards variations in the return to risk, are desirable not only to describe behavior under risk but also to explain behavior in other contexts, as illustrated by an example. In the second study, we propose three additional treatments intended to elicit risk attitudes under high stakes and mixed outcome (gains and losses) lotteries. Using a dataset obtained from a hypothetical implementation of the tasks we show that the new treatments are able to capture both dimensions of risk attitudes. This new dataset allows us to describe several regularities, both at the aggregate and within-subjects level. We find that in every treatment over 70% of choices show some degree of risk aversion and only between 0.6% and 15.3% of individuals are consistently risk neutral within the same treatment. We also confirm the existence of gender differences in the degree of risk taking, that is, in all treatments females prefer safer lotteries compared to males. Regarding our second dimension of risk attitudes we observe, in all treatments, an increase in risk taking in response to risk premium increases. Treatment comparisons reveal other regularities, such as a lower degree of risk taking in large stake treatments compared to low stake treatments and a lower degree of risk taking when losses are incorporated into the large stake lotteries. Results that are compatible with previous findings in the literature, for stake size effects (e.g., Binswanger, 1980; Antoni Bosch-Domènech & Silvestre, 1999; Hogarth & Einhorn, 1990; Holt & Laury, 2002; Kachelmeier & Shehata, 1992; Kühberger et al., 1999; B. J. Weber & Chapman, 2005; Wik et al., 2007) and domain effect (e.g., Brooks and Zank, 2005, Schoemaker, 1990, Wik et al., 2007). Whereas for small stake treatments, we find that the effect of incorporating losses into the outcomes is not so clear. At the aggregate level an increase in risk taking is observed, but also more dispersion in the choices, whilst at the within-subjects level the effect weakens. Finally, regarding responses to risk premium, we find that compared to only gains treatments sensitivity is lower in the mixed lotteries treatments (SL and LL). In general sensitivity to risk-return is more affected by the domain than the stake size. After having described the properties of risk attitudes as captured by the SGG risk elicitation task and its three new versions, it is important to recall that the danger of using unidimensional descriptions of risk attitudes goes beyond the incompatibility with modern economic theories like PT, CPT etc., all of which call for tests with multiple degrees of freedom. Being faithful to this recommendation, the contribution of this essay is an empirically and endogenously determined bi-dimensional specification of risk attitudes, useful to describe behavior under uncertainty and to explain behavior in other contexts. Hopefully, this will contribute to create large datasets containing a multidimensional description of individual risk attitudes, while at the same time allowing for a robust context, compatible with present and even future more complex descriptions of human attitudes towards risk.
Resumo:
What is the relationship between magnitude judgments relying on directly available characteristics versus probabilistic cues? Question frame was manipulated in a comparative judgment task previously assumed to involve inference across a probabilistic mental model (e.g., “which city is largest” – the “larger” question – versus “which city is smallest” – the “smaller” question). Participants identified either the largest or smallest city (Experiments 1a, 2) or the richest or poorest person (Experiment 1b) in a three-alternative forced choice (3-AFC) task (Experiment 1) or 2-AFC task (Experiment 2). Response times revealed an interaction between question frame and the number of options recognized. When asked the smaller question, response times were shorter when none of the options were recognized. The opposite pattern was found when asked the larger question: response time was shorter when all options were recognized. These task-stimuli congruity results in judgment under uncertainty are consistent with, and predicted by, theories of magnitude comparison which make use of deductive inferences from declarative knowledge.
Resumo:
This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Over the last three decades, international agricultural trade has grown significantly. Technological advances in transportation logistics and storage have created opportunities to ship anything almost anywhere. Bilateral and multilateral trade agreements have also opened new pathways to an increasingly global market place. Yet, international agricultural trade is often constrained by differences in regulatory regimes. The impact of “regulatory asymmetry” is particularly acute for small and medium sized enterprises (SMEs) that lack resources and expertise to successfully operate in markets that have substantially different regulatory structures. As governments seek to encourage the development of SMEs, policy makers often confront the critical question of what ultimately motivates SME export behavior. Specifically, there is considerable interest in understanding how SMEs confront the challenges of regulatory asymmetry. Neoclassical models of the firm generally emphasize expected profit maximization under uncertainty, however these approaches do not adequately explain the entrepreneurial decision under regulatory asymmetry. Behavioral theories of the firm offer a far richer understanding of decision making by taking into account aspirations and adaptive performance in risky environments. This paper develops an analytical framework for decision making of a single agent. Considering risk, uncertainty and opportunity cost, the analysis focuses on the export behavior response of an SME in a situation of regulatory asymmetry. Drawing on the experience of fruit processor in Muzaffarpur, India, who must consider different regulatory environments when shipping fruit treated with sulfur dioxide, the study dissects the firm-level decision using @Risk, a Monte Carlo computational tool.
Resumo:
This paper examines the role of uncertainty and imperfect local knowledge in foreign direct investment. The main idea comes from the literature on investment under uncertainty, such as Pindyck (1991) and Dixit and Pindyck (1994). We empirically test .the value of waiting. with a dataset on foreign direct investment (FDI). Many factors (e.g., political and economic regulations) as well as uncertainty and the risks due to imperfect local knowledge, determine the attractiveness of FDI. The uncertainty and irreversibility of FDI links the time interval between permission and actual execution of such FDI with explanatory variables, including information on foreign (home) countries and domestic industries. Common factors, such as regulatory change and external shocks, may affect the uncertainty when foreign investors make irreversible FDI decisions. We derive testable hypotheses from models of investment under uncertainty to determine those possible factors that induce delays in FDI, using Korean data over 1962 to 2001.
Resumo:
El conjunto eficiente en la Teoría de la Decisión Multicriterio juega un papel fundamental en los procesos de solución ya que es en este conjunto donde el decisor debe hacer su elección más preferida. Sin embargo, la generación de tal conjunto puede ser difícil, especialmente en problemas continuos y/o no lineales. El primer capítulo de esta memoria, es introductorio a la Decisión Multicriterio y en él se exponen aquellos conceptos y herramientas que se van a utilizar en desarrollos posteriores. El segundo capítulo estudia los problemas de Toma de Decisiones en ambiente de certidumbre. La herramienta básica y punto de partida es la función de valor vectorial que refleja imprecisión sobre las preferencias del decisor. Se propone una caracterización del conjunto de valor eficiente y diferentes aproximaciones con sus propiedades de encaje y convergencia. Varios algoritmos interactivos de solución complementan los desarrollos teóricos. El tercer capítulo está dedicado al caso de ambiente de incertidumbre. Tiene un desarrollo parcialmente paralelo al anterior y utiliza la función de utilidad vectorial como herramienta de modelización de preferencias del decisor. A partir de la consideración de las distribuciones simples se introduce la eficiencia en utilidad, su caracterización y aproximaciones, que posteriormente se extienden a los casos de distribuciones discretas y continuas. En el cuarto capítulo se estudia el problema en ambiente difuso, aunque de manera introductoria. Concluimos sugiriendo distintos problemas abiertos.---ABSTRACT---The efficient set of a Multicriteria Decicion-Making Problem plays a fundamental role in the solution process since the Decisión Maker's preferred choice should be in this set. However, the computation of that set may be difficult, specially in continuous and/or nonlinear problems. Chapter one introduces Multicriteria Decision-Making. We review basic concepts and tools for later developments. Chapter two studies Decision-Making problems under certainty. The basic tool is the vector valué function, which represents imprecisión in the DM's preferences. We propose a characterization of the valué efficient set and different approximations with nesting and convergence properties. Several interactive algorithms complement the theoretical results. We devote Chapter three to problems under uncertainty. The development is parallel to the former and uses vector utility functions to model the DM's preferences. We introduce utility efficiency for simple distributions, its characterization and some approximations, which we partially extend to discrete and continuous classes of distributions. Chapter four studies the problem under fuzziness, at an exploratory level. We conclude with several open problems.
Resumo:
OpenMI is a widely used standard allowing exchange of data between integrated models, which has mostly been applied to dynamic, deterministic models. Within the FP7 UncertWeb project we are developing mechanisms and tools to support the management of uncertainty in environmental models. In this paper we explore the integration of the UncertWeb framework with OpenMI, to assess the issues that arise when propagating uncertainty in OpenMI model compositions, and the degree of integration possible with UncertWeb tools. In particular we develop an uncertainty-enabled model for a simple Lotka-Volterra system with an interface conforming to the OpenMI standard, exploring uncertainty in the initial predator and prey levels, and the parameters of the model equations. We use the Elicitator tool developed within UncertWeb to identify the initial condition uncertainties, and show how these can be integrated, using UncertML, with simple Monte Carlo propagation mechanisms. The mediators we develop for OpenMI models are generic and produce standard Web services that expose the OpenMI models to a Web based framework. We discuss what further work is needed to allow a more complete system to be developed and show how this might be used practically.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
El presente artículo, presenta un análisis de las decisiones de estructuración de capital de la compañía Merck Sharp & Dome S.A.S, desde la perspectiva de las finanzas comportamentales, comparando los métodos utilizados actualmente por la compañía seleccionada con la teoría tradicional de las finanzas, para así poder evaluar el desempeño teórico y real. Incorporar elementos comportamentales dentro del estudio permite profundizar más sobre de las decisiones corporativas en un contexto más cercano a los avances investigativos de las finanzas del comportamiento, lo cual lleva a que el análisis de este artículo se enfoque en la identificación y entendimiento de los sesgos de exceso de confianza y statu quo, pero sobre todo su implicación en las decisiones de financiación. Según la teoría tradicional el proceso de estructuración de capital se guía por los costos, pero este estudio de caso permitió observar que en la práctica esta relación de costo-decisión está en un segundo lugar, después de la relación riesgo-decisión a la hora del proceso de estructuración de capital.
Resumo:
This thesis consists of three essays on information economics. I explore how information is strategically communicated or designed by senders who aim to influence the decisions of a receiver. In the first chapter, I study a cheap talk game between two imperfectly informed experts and a decision maker. The experts receive noisy signals about the state and sequentially communicate the relevant information to the decision maker. I refine the self-serving belief system under uncertainty and Ι characterise the most informative equilibrium that might arise in such environments.In the second chapter, I consider the case where a decision maker seeks advice from a biased expert who cares also about establishing a reputation of being competent. The expert has the incentives to misreport her information but she faces a trade-off between the gain from misrepresentation and the potential reputation loss. I show that the equilibrium is fully-revealing if the expert is not too biased and not too highly reputable. If there is competition between two experts the information transmission is always improved. However, in cases where the experts are more than two the result is ambiguous, and it depends on the players’ prior belief over states.In the last chapter, I consider a model of strategic communication where a privately and imperfectly informed sender can persuade a receiver. The sender may receive favorable or unfavorable private information about her preferred state. I describe two ways that are adopted in real life situations and theoretically improve equilibrium informativeness given sender's private information. First, a policy that suggests symmetry constraints to the experiments' choice. Second, an approval strategy characterised by a low precision threshold where the receiver will accept the sender with a positive probability and a higher one where the sender will be accepted with certainty.
Resumo:
The aim of this work is to present a general overview of state-of-the-art related to design for uncertainty with a focus on aerospace structures. In particular, a simulation on a FCCZ lattice cell and on the profile shape of a nozzle will be performed. Optimization under uncertainty is characterized by the need to make decisions without complete knowledge of the problem data. When dealing with a complex problem, non-linearity, or optimization, two main issues are raised: the uncertainty of the feasibility of the solution and the uncertainty of the objective value of the function. In the first part, the Design Of Experiments (DOE) methodologies, Uncertainty Quantification (UQ), and then Uncertainty optimization will be deepened. The second part will show an application of the previous theories on through a commercial software. Nowadays multiobjective optimization on high non-linear problem can be a powerful tool to approach new concept solutions or to develop cutting-edge design. In this thesis an effective improvement have been reached on a rocket nozzle. Future work could include the introduction of multi scale modelling, multiphysics approach and every strategy useful to simulate as much possible real operative condition of the studied design.