990 resultados para Chimeric Gene-product


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Opiates are potent analgesic and addictive compounds. They also act on immune responses, and morphine, the prototypic opiate, has been repeatedly described as an immunosuppressive drug. Pharmacological studies have suggested that the inhibitory action of opiates on immunity is mediated by multiple opioid receptor sites but molecular evidence has remained elusive. Recently, three genes encoding μ- (MOR), δ-, and κ-opioid receptors have been cloned. To investigate whether the μ-opioid receptor is functionally implicated in morphine immunosuppression in vivo, we have examined immune responses of mice with a genetic disruption of the MOR gene. In the absence of drug, there was no difference between wild-type and mutant mice with regard to a large number of immunological endpoints, suggesting that the lack of MOR-encoded protein has little consequence on immune status. Chronic morphine administration induced lymphoid organ atrophy, diminished the ratio of CD4+CD8+ cells in the thymus and strongly reduced natural killer activity in wild-type mice. None of these effects was observed in MOR-deficient mice after morphine treatment. This demonstrates that the MOR gene product represents a major molecular target for morphine action on the immune system. Because our previous studies of MOR-deficient mice have shown that this receptor protein is also responsible for morphine analgesia, reward, and physical dependence, the present results imply that MOR-targeted therapeutic drugs that are developed for the treatment of pain or opiate addiction may concomitantly influence immune responses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is increasing recognition that stochastic processes regulate highly predictable patterns of gene expression in developing organisms, but the implications of stochastic gene expression for understanding haploinsufficiency remain largely unexplored. We have used simulations of stochastic gene expression to illustrate that gene copy number and expression deactivation rates are important variables in achieving predictable outcomes. In gene expression systems with non-zero expression deactivation rates, diploid systems had a higher probability of uninterrupted gene expression than haploid systems and were more successful at maintaining gene product above a very low threshold. Systems with relatively rapid expression deactivation rates (unstable gene expression) had more predictable responses to a gradient of inducer than systems with slow or zero expression deactivation rates (stable gene expression), and diploid systems were more predictable than haploid, with or without dosage compensation. We suggest that null mutations of a single allele in a diploid organism could decrease the probability of gene expression and present the hypothesis that some haploinsufficiency syndromes might result from an increased susceptibility to stochastic delays of gene initiation or interruptions of gene expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe dhp1+ gene is an ortholog of the Saccharomyces cerevisiae RAT1 gene, which encodes a nuclear 5′→3′ exoribonuclease, and is essential for cell viability. To clarify the cellular functions of the nuclear 5′→3′ exoribonuclease, we isolated and characterized a temperature-sensitive mutant of dhp1 (dhp1-1 mutant). The dhp1-1 mutant showed nuclear accumulation of poly(A)+ RNA at the restrictive temperature, as was already reported for the rat1 mutant. Interestingly, the dhp1-1 mutant exhibited aberrant chromosome segregation at the restrictive temperature. The dhp1-1 cells frequently contained condensed chromosomes, most of whose sister chromatids failed to separate during mitosis despite normal mitotic spindle elongation. Finally, chromosomes were displaced or unequally segregated. As similar mitotic defects were also observed in Dhp1p-depleted cells, we concluded that dhp1+ is required for proper chromosome segregation as well as for poly(A)+ RNA metabolism in fission yeast. Furthermore, we isolated a multicopy suppressor of the dhp1-1 mutant, referred to as din1+. We found that the gene product of dhp1-1 was unstable at high temperatures, but that reduced levels of Dhp1-1p could be suppressed by overexpressing Din1p at the restrictive temperature. Thus, Din1p may physically interact with Dhp1p and stabilize Dhp1p and/or restore its activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Upon the completion of the Saccharomyces cerevisiae genomic sequence in 1996 [Goffeau,A. et al. (1997) Nature, 387, 5], several creative and ambitious projects have been initiated to explore the functions of gene products or gene expression on a genome-wide scale. To help researchers take advantage of these projects, the Saccharomyces Genome Database (SGD) has created two new tools, Function Junction and Expression Connection. Together, the tools form a central resource for querying multiple large-scale analysis projects for data about individual genes. Function Junction provides information from diverse projects that shed light on the role a gene product plays in the cell, while Expression Connection delivers information produced by the ever-increasing number of microarray projects. WWW access to SGD is available at genome-www.stanford.edu/Saccharomyces/.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Lec35 gene product (Lec35p) is required for utilization of the mannose donor mannose-P-dolichol (MPD) in synthesis of both lipid-linked oligosaccharides (LLOs) and glycosylphosphatidylinositols, which are important for functions such as protein folding and membrane anchoring, respectively. The hamster Lec35 gene is shown to encode the previously identified cDNA SL15, which corrects the Lec35 mutant phenotype and predicts a novel endoplasmic reticulum membrane protein. The mutant hamster alleles Lec35.1 and Lec35.2 are characterized, and the human Lec35 gene (mannose-P-dolichol utilization defect 1) was mapped to 17p12-13. To determine whether Lec35p was required only for MPD-dependent mannosylation of LLO and glycosylphosphatidylinositol intermediates, two additional lipid-mediated reactions were investigated: MPD-dependent C-mannosylation of tryptophanyl residues, and glucose-P-dolichol (GPD)-dependent glucosylation of LLO. Both were found to require Lec35p. In addition, the SL15-encoded protein was selective for MPD compared with GPD, suggesting that an additional GPD-selective Lec35 gene product remains to be identified. The predicted amino acid sequence of Lec35p does not suggest an obvious function or mechanism. By testing the water-soluble MPD analog mannose-β-1-P-citronellol in an in vitro system in which the MPD utilization defect was preserved by permeabilization with streptolysin-O, it was determined that Lec35p is not directly required for the enzymatic transfer of mannose from the donor to the acceptor substrate. These results show that Lec35p has an essential role for all known classes of monosaccharide-P-dolichol-dependent reactions in mammals. The in vitro data suggest that Lec35p controls an aspect of MPD orientation in the endoplasmic reticulum membrane that is crucial for its activity as a donor substrate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human synovial sarcoma has been shown to exclusively harbor the chromosomal translocation t(X;18) that produces the chimeric gene SYT-SSX. However, the role of SYT-SSX in cellular transformation remains unclear. In this study, we have established 3Y1 rat fibroblast cell lines that constitutively express SYT, SSX1, and SYT-SSX1 and found that SYT-SSX1 promoted growth rate in culture, anchorage-independent growth in soft agar, and tumor formation in nude mice. Deletion of the N-terminal 181 amino acids of SYT-SSX1 caused loss of its transforming activity. Furthermore, association of SYT-SSX1 with the chromatin remodeling factor hBRM/hSNF2α, which regulates transcription, was demonstrated in both SYT-SSX1-expressing 3Y1 cells and in the human synovial sarcoma cell line HS-SY-II. The binding region between the two molecules was shown to reside within the N-terminal 181 amino acids stretch (aa 1–181) of SYT-SSX1 and 50 amino acids (aa 156–205) of hBRM/hSNF2α and we found that the overexpression of this binding region of hBRM/hSNF2α significantly suppressed the anchorage-independent growth of SYT-SSX1-expressing 3Y1 cells. To analyze the transcriptional regulation by SYT-SSX1, we established conditional expression system of SYT-SSX1 and examined the gene expression profiles. The down-regulation of potential tumor suppressor DCC was observed among 1,176 genes analyzed by microarray analysis, and semi-quantitative reverse transcription–PCR confirmed this finding. These data clearly demonstrate transforming activity of human oncogene SYT-SSX1 and also involvement of chromatin remodeling factor hBRM/hSNF2α in human cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20+ is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20+ gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent studies have shown that the genes of the gibberellin (GA) biosynthesis pathway in the fungus Gibberella fujikuroi are organized in a cluster of at least seven genes. P450–1 is one of four cytochrome P450 monooxygenase genes in this cluster. Disruption of the P450–1 gene in the GA-producing wild-type strain IMI 58289 led to total loss of GA production. Analysis of the P450–1-disrupted mutants indicated that GA biosynthesis was blocked immediately after ent-kaurenoic acid. The function of the P450–1 gene product was investigated further by inserting the gene into mutants of G. fujikuroi that lack the entire GA gene cluster; the gene was highly expressed under GA production conditions in the absence of the other GA-biosynthesis genes. Cultures of transformants containing P450–1 converted ent-[14C]kaurenoic acid efficiently into [14C]GA14, indicating that P450–1 catalyzes four sequential steps in the GA-biosynthetic pathway: 7β-hydroxylation, contraction of ring B by oxidation at C-6, 3β-hydroxylation, and oxidation at C-7. The GA precursors ent-7α-hydroxy[14C]kaurenoic acid, [14C]GA12-aldehyde, and [14C]GA12 were also converted to [14C]GA14. In addition, there is an indication that P450–1 may also be involved in the formation of the kaurenolides and fujenoic acids, which are by-products of GA biosynthesis in G. fujikuroi. Thus, P450–1 displays remarkable multifunctionality and may be responsible for the formation of 12 products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some foreign genes introduced into plants are poorly expressed, even when transcription is controlled by a strong promoter. Perhaps the best examples of this problem are the cry genes of Bacillus thuringiensis (B.t.), which encode the insecticidal proteins commonly referred to as B.t. toxins. As a step toward overcoming such problems most effectively, we sought to elucidate the mechanisms limiting the expression of a typical B.t.-toxin gene, cryIA(c), which accumulates very little mRNA in tobacco (Nicotiana tabacum) cells. Most cell lines transformed with the cryIA(c) B.t.-toxin gene accumulate short, polyadenylated transcripts. The abundance of these transcripts can be increased by treating the cells with cycloheximide, a translation inhibitor that can stabilize many unstable transcripts. Using a series of hybridizations, reverse-transcriptase polymerase chain reactions, and RNase-H-digestion experiments, poly(A+) addition sites were identified in the B.t.-toxin-coding region corresponding to the short transcripts. A fourth polyadenylation site was identified using a chimeric gene. These results demonstrate for the first time to our knowledge that premature polyadenylation can limit the expression of a foreign gene in plants. Moreover, this work emphasizes that further study of the fundamental principles governing polyadenylation in plants will have basic as well as applied significance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have modified the infectious reovirus RNA system so as to generate a reovirus reverse genetics system. The system consists of (i) the plus strands of nine wild-type reovirus genome segments; (ii) transcripts of the genetically modified cDNA form of the tenth genome segment; and (iii) a cell line transformed so as to express the protein normally encoded by the tenth genome segment. In the work described here, we have generated a serotype 3 reovirus into the S2 double-stranded RNA genome segment of which the CAT gene has been cloned. The virus is stable, replicates in cells that have been transformed (so as to express the S2 gene product, protein σ2), and expresses high levels of CAT activity. This technology can be extended to members of the orbivirus and rotavirus genera. This technology provides a powerful system for basic studies of double-stranded RNA virus replication; a nonpathogenic viral vector that replicates to high titers and could be used for clinical applications; and a system for providing nonselectable viral variants (the result of mutations, insertions, and deletions) that could be valuable for the construction of viral vaccine strains against human and animal pathogens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have previously shown that the expression of an unedited atp9 chimeric gene correlated with male-sterile phenotype in transgenic tobacco plant. To study the relationship between the expression of chimeric gene and the male-sterile trait, hemizygous and homozygous transgenic tobacco lines expressing the antisense atp9 RNA were constructed. The antisense producing plants were crossed with a homozygous male-sterile line, and the F1 progeny was analyzed. The offspring from crosses between homozygous lines produced only male-fertile plants, suggesting that the expression antisense atp9 RNA abolishes the effect of the unedited chimeric gene. In fact, the plants restored to male fertility showed a dramatic reduction of the unedited atp9 transcript levels, resulting in normal flower development and seed production. These results support our previous observation that the expression of unedited atp9 gene can induce male sterility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aldose reductase (EC 1.1.1.21) catalyzes the NADPH-mediated conversion of glucose to sorbitol. The hyperglycemia of diabetes increases sorbitol production primarily through substrate availability and is thought to contribute to the pathogenesis of many diabetic complications. Increased sorbitol production can also occur at normoglycemic levels via rapid increases in aldose reductase transcription and expression, which have been shown to occur upon exposure of many cell types to hyperosmotic conditions. The induction of aldose reductase transcription and the accumulation of sorbitol, an organic osmolyte, have been shown to be part of the physiological osmoregulatory mechanism whereby renal tubular cells adjust to the intraluminal hyperosmolality during urinary concentration. Previously, to explore the mechanism regulating aldose reductase levels, we partially characterized the human aldose reductase gene promoter present in a 4.2-kb fragment upstream of the transcription initiation start site. A fragment (-192 to +31 bp) was shown to contain several elements that control the basal expression of the enzyme. In this study, we examined the entire 4.2-kb human AR gene promoter fragment by deletion mutagenesis and transfection studies for the presence of osmotic response enhancer elements. An 11-bp nucleotide sequence (TGGAAAATTAC) was located 3.7 kb upstream of the transcription initiation site that mediates hypertonicity-responsive enhancer activity. This osmotic response element (ORE) increased the expression of the chloramphenicol acetyltransferase reporter gene product 2-fold in transfected HepG2 cells exposed to hypertonic NaCl media as compared with isoosmotic media. A more distal homologous sequence is also described; however, this sequence has no osmotic enhancer activity in transfected cells. Specific ORE mutant constructs, gel shift, and DNA fragment competition studies confirm the nature of the element and identify specific nucleotides essential for enhancer activity. A plasmid construct containing three repeat OREs and a heterologous promoter increased expression 8-fold in isoosmotic media and an additional 4-fold when the transfected cells are subjected to hyperosmotic stress (total approximately 30-fold). These findings will permit future studies to identify the transcription factors involved in the normal regulatory response mechanism to hypertonicity and to identify whether and how this response is altered in a variety of pathologic states, including diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lack of leptin (ob) protein causes obesity in mice. The leptin gene product is important for normal regulation of appetite and metabolic rate and is produced exclusively by adipocytes. Leptin mRNA was induced during the adipose conversion of 3T3-L1 cells, which are useful for studying adipocyte differentiation and function under controlled conditions. We studied leptin regulation by antidiabetic thiazolidinedione compounds, which are ligands for the adipocyte-specific nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) that regulates the transcription of other adipocyte-specific genes. Remarkably, leptin gene expression was dramatically repressed within a few hours after thiazolidinedione treatment. The ED50 for inhibition of leptin expression by the thiazolidinedione BRL49653 was between 5 and 50 nM, similar to its Kd for binding to PPARgamma. The relatively weak, nonthiazolidinedione PPAR activator WY 14,643 also inhibited leptin expression, but was approximately 1000 times less potent than BRL49653. These results indicate that antidiabetic thiazolidinediones down-regulate leptin gene expression with potencies that correlate with their abilities to bind and activate PPARgamma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ob gene product, leptin, apparently exclusively expressed in adipose tissue, is a signaling factor regulating body weight homeostasis and energy balance. ob gene expression is increased in obese rodents and regulated by feeding, insulin, and glucocorticoids, which supports the concept that ob gene expression is under hormonal control, which is expected for a key factor controlling body weight homeostasis and energy balance. In humans, ob mRNA expression is increased in gross obesity; however, the effects of the above factors on human ob expression are unknown. We describe the structure of the human ob gene and initial functional analysis of its promoter. The human ob gene's three exons cover approximately 15 kb of genomic DNA. The entire coding region is contained in exons 2 and 3, which are separated by a 2-kb intron. The first small 30-bp untranslated exon is located >10.5 kb upstream of the initiator ATG codon. Three kilobases of DNA upstream of the transcription start site has been cloned and characterized. Only 217 bp of 5' sequence are required for basal adipose tissue-specific expression of the ob gene as well as enhanced expression by C/EBPalpha. Mutation of the single C/EBPalpha site in this region abolished inducibility of the promoter by C/EBPalpha in cotransfection assays. The gene structure will facilitate our analysis of ob mutations in human obesity, whereas knowledge of sequence elements and factors regulating ob gene expression should be of major importance in the prevention and treatment of obesity.