883 resultados para Chemotherapeutic agents
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
"Isolation and evaluation of the biological activity related to the major alkaloids in Tabernaemontana angulata Mart. ex Mull Arg., Apocynaceae." Introducing-new chemotherapeutic agents is a, great demand. in the control of infections diseases.' Brazil is one of the richest countries in biodiversity and the Laboratorio de Extracao at UNIP has been collecting plants from. the Amazon and Atlantic Rain Forests with the aim of screening for new antibacterial and antitumor plant extracts. Previous studies demonstrated that the ethanol fraction obtained from the crude extract of Tabernaemontana angulata stems showed antibacterial activity against Staphylococcus aureus (ATCC 6538 in the microdilution broth assay. Two alkaloids were the major compounds in the active fraction, verified by thin layer chromatography analysis. In the present study, the total alkaloids were obtained from the crude extract and were fractionated by preparative thin layer chromatography for the isolation of the main components. The isolated. compounds were identified by GC/MS and (1)H-NMR as coronaridine,e and voacangine. The alkaloid fractions obtained from the isolation procedure were tested for antibacterial activity, but no activity was detected.
Resumo:
Three-hundred faecal swabs were obtained from pigs with diarrhoea in farms located in different areas of the Ribeirao Preto region in the State of Sao Paulo. One-hundred Escherichia coli strains were isolated and tested for production of thermolabile (TL) and thermostable (STRa and STb) enterotoxins, and for the presence of colonization factors F4, F5 and F6. The strains were also tested for sensitivity to 14 antibiotics and chemotherapeutic agents. Twenty-four Escherichia coli strains produced enterotoxin STb, 5 produced LT and 3 produced STa. In the mannose-resistant haemagglutination reaction, one strain reacted positively with sheep, chicken, horse and human red blood cells and another reacted positively with guinea pig, sheep, chicken, horse and human red cells. However, both strains were negative for colonization factors F4, F5 and F6 when submitted to the slide agglutination test. All Escherichia coli strains were resistant to at least one antibiotic, the highest percentages being obtained for resistance to penicillin, tetracycline and cephalotin. In addition to the importance of the virulence factors normally encountered in enterotoxigenic Escherichia coli strains from pigs, the present results show the possible existence of new colonization factors other than F4, F5 and F6 participating in E. coli-induced pigs colibacillosis in the Ribeirao Preto region.
Resumo:
The main method used for the control of gastrointestinal nematodes in sheep production is the application of chemotherapeutic agents, which often lead to the selection of parasites resistant to given active principles. Biological control can be considered a promising alternative, contributing to an increase in the efficacy of verminous control. We determined the in vitro activity and in situ survival of the predatory fungi Arthrobotrys musiformis and Arthrobotrys conoides during passage through the gastrointestinal tract of sheep after oral administration of conidia in microencapsulated form and as a liquid in natura. Initial in vitro tests showed that both fungi were efficient in the predation of trichostrongylid L3 larvae present in the faeces of sheep naturally infected with gastrointestinal nematodes. The fungi presented high nematophagous activity, which was 99.3% for A. conoides and 73.7% for A. musiformis. A. conoides did not survive passage through the gastrointestinal tract under the conditions of the present experiment. On the other hand, A. musiformis was reisolated after administration in either microencapsulated or liquid form, suggesting that this species is a promising alternative for the control of nematodes in sheep since it survives without any protection (in natura). © Springer 2005.
Resumo:
The increase in incidence of infectious diseases worldwide, particularly in developing countries, is worrying. Each year, 14 million people are killed by infectious diseases, mainly HIV/AIDS, respiratory infections, malaria and tuberculosis. Despite the great burden in the poor countries, drug discovery to treat tropical diseases has come to a standstill. There is no interest by the pharmaceutical industry in drug development against the major diseases of the poor countries, since the financial return cannot be guaranteed. This has created an urgent need for new therapeutics to neglected diseases. A possible approach has been the exploitation of the inhibition of unique targets, vital to the pathogen such as the shikimate pathway enzymes, which are present in bacteria, fungi and apicomplexan parasites but are absent in mammals. The chorismate synthase (CS) catalyses the seventh step in this pathway, the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. The strict requirement for a reduced flavin mononucleotide and the anti 1,4 elimination are both unusual aspects which make CS reaction unique among flavin-dependent enzymes, representing an important target for the chemotherapeutic agents development. In this review we present the main biochemical features of CS from bacterial and fungal sources and their difference from the apicomplexan CS. The CS mechanisms proposed are discussed and compared with structural data. The CS structures of some organisms are compared and their distinct features analyzed. Some known CS inhibitors are presented and the main characteristics are discussed. The structural and kinetics data reviewed here can be useful for the design of inhibitors. © 2007 Bentham Science Publishers Ltd.
Resumo:
Our understanding of dental plaque biofilm has evolved since the nonspecific plaque hypothesis that considered plaque as a nonspecific mass of native microorganisms that, because of lack of oral hygiene, builds up in proportions great enough to overcome the host resistance threshold and affect the tooth structure and tooth supporting tissues. A great diversity of microorganisms-over 700 species-was detected in the oral cavity, and evidence shows that the investigation of specific microorganisms or associations of microorganisms as etiological agents for periodontal diseases and caries is not a simplistic approach. Although clinical evidence shows that oral mechanical hygiene is fundamental to prevent and control caries and periodontal disease, it is important to highlight that optimal control is not achieved by most individuals. Thus the complementary use of chemotherapeutic agents has been investigated as a way to overcome the deficiencies of mechanical oral hygiene habits, insofar as they reduce both plaque formation and gingival inflammation, and represent a valid strategy to change the biofilm and maintain dental and periodontal health. The role of the dental professional is to monitor patients and offer them the best recommendations to preserve oral health throughout their life. With this in mind, chemical control should be indicated as part of daily oral hygiene, together with mechanical procedures, for all individuals who present supragingival and/or subgingival biofilm, taking into account age, physical and/or psychological limitations, allergies, and other factors.
Resumo:
Given that cancer is one of the main causes of death worldwide, many efforts have been directed toward discovering new treatments and approaches to cure or control this group of diseases. Chemotherapy is the main treatment for cancer; however, a conventional schedule based on maximum tolerated dose (MTD) shows several side effects and frequently allows the development of drug resistance. On the other side, low dose chemotherapy involves antiangiogenic and immunomodulatory processes that help host to fight against tumor cells, with lower grade of side effects. In this review, we present evidence that metronomic chemotherapy, based on the frequent administration of low or intermediate doses of chemotherapeutics, can be better than or as efficient as MTD. Finally, we present some data indicating that noncytotoxic concentrations of antineoplastic agents are able to both up-regulate the immune system and increase the susceptibility of tumor cells to cytotoxic T lymphocytes. Taken together, data from the literature provides us with sufficient evidence that low concentrations of selected chemotherapeutic agents, rather than conventional high doses, should be evaluated in combination with immunotherapy. Copyright © 2012 UICC.
Resumo:
Osteosarcoma (OSA) is a primary bone neoplasm frequently diagnosed in dogs. The biology of OSA in pet dogs is identical to that of pediatric patients, and it has been considered an excellent model in vivo to study human OSA. Since the individual response to chemotherapy is unpredictable and considering that propolis is a natural product with several biological properties, this work evaluated the cytotoxic action of propolis on canine OSA cells. The primary cell culture of canine OSA was obtained from the tumor of a dog with OSA. Cell viability was assessed after incubation with propolis, 70% ethanol (propolis solvent), and carboplatin after 6, 24, 48, and 72 h. Cell viability was analyzed by the crystal violet method. Data showed that canine OSA cells were sensitive to propolis in a dose- and time-dependent manner and had a distinct morphology compared to control. Its solvent (70% ethanol) had no effect on cell viability, suggesting that the cytotoxic action was exclusively due to propolis. Our propolis sample exerted a cytotoxic effect on canine OSA cells, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Squamous cell carcinoma is a keratinocytes malignant tumor, the definitive diagnosis of this disease is based on histopathology examination of the lesions. The cats nostrils is one of regions commonly affected by this neoplasm. The response to chemotherapeutic agents, cryosurgery and radiotherapy is poor and for this reason surgical resection is instituted for remove the greatest amount of tissue engaged and provide free margins, in case of nasal involvement are indicated nosectomy often needing reconstructive techniques using as advance flaps for synthesis of surgical wounds. Due to the high incidence of feline patients with this entity, this study aims to report and discuss the effectiveness of nosectomy in seven cats with the disease. It is concluded that nosectomy as a therapeutic technique effective in five of seven cats, resecting tumor margin and providing acceptable time and quality life.
Resumo:
The eletrochemotherapy is a new treatment option for neoplasms that involves the application of chemotherapeutic drugs endovenously or intralesionally, associated with local severe and short duration electrical pulses. The electrical pulses promote destabilization of the cell membrane, causing transitory pore formation and facilitating the entry of chemotherapeutic agents inside the cells, increasing its cytotoxicity. This therapy allows for lower doses of chemotherapy drugs compared to conventional chemotherapy, resulting in the decrease of side effects and costs of treatment. The eletrochemotherapy has proved effective in the treatment of cancer regardless of its histological origin and location. This review aims to highlight possibilities to use this treatment in Veterinary Oncology