927 resultados para Chemical-structure
Resumo:
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.
Resumo:
MOTIVATION: Most bioactive molecules perform their action by interacting with proteins or other macromolecules. However, for a significant fraction of them, the primary target remains unknown. In addition, the majority of bioactive molecules have more than one target, many of which are poorly characterized. Computational predictions of bioactive molecule targets based on similarity with known ligands are powerful to narrow down the number of potential targets and to rationalize side effects of known molecules. RESULTS: Using a reference set of 224 412 molecules active on 1700 human proteins, we show that accurate target prediction can be achieved by combining different measures of chemical similarity based on both chemical structure and molecular shape. Our results indicate that the combined approach is especially efficient when no ligand with the same scaffold or from the same chemical series has yet been discovered. We also observe that different combinations of similarity measures are optimal for different molecular properties, such as the number of heavy atoms. This further highlights the importance of considering different classes of similarity measures between new molecules and known ligands to accurately predict their targets. CONTACT: olivier.michielin@unil.ch or vincent.zoete@unil.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
A list of opisthobranch molluscs species from the western Mediterranean and nearby Atlantic is presented. These species have natural products that are of interest because of their chemical structure, origin and/or function in benthic ecosystems. This review contains data on the origin and activity of these molecules, collection sites of the animals, and their bibliographic references. A discussion of these subjects is also included.
Resumo:
A general understanding of interactions between DNA andoppositely charged compounds forms the basis for developing novelDNA-based materials, including gel particles. The association strength,which is altered by varying the chemical structure of the cationiccosolute, determines the spatial homogeneity of the gelation process,creating DNA reservoir devices and DNA matrix devices that can bedesigned to release either single- (ssDNA) or double-stranded(dsDNA) DNA. This paper reviews the preparation of DNA gelparticles using surfactants, proteins and polysaccharides. Particlemorphology, swelling/dissolution behaviour, degree of DNAentrapment and DNA release responses as a function of the nature ofthe cationic agent used are discussed. Current directions in thehaemocompatible and cytotoxic characterization of these DNA gelparticles have been also included.
Resumo:
Five selective serotonin reuptake inhibitors (SSRIs) have been introduced recently: citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline. Although no therapeutic window has been defined for SSRIs, in contrast to tricyclic antidepressants, analytical methods for therapeutic drug monitoring of SSRIs are useful in several instances. SSRIs differ widely in their chemical structure and in their metabolism. The fact that some of them have N-demethylated metabolites, which are also SSRIs, requires that methods be available which allow therapeutic drug monitoring of the parent compounds and of these active metabolites. most procedures are based on prepurification of the SSRIs by liquid-liquid extraction before they are submitted to separation by chromatographic procedures (high-performance liquid chromatography, gas chromatography, thin layer chromatography) and detection by various detectors (UV, fluorescence, electrochemical detector, nitrogen-phosphorus detector, mass spectrometry). This literature review shows that most methods allow quantitative determination of SSRIs in plasma, in the lower ng/ml range, and that they are, therefore, suitable for therapeutic drug monitoring purposes of this category of drugs.
Resumo:
Lämpökameroiden kehitys on mahdollistanut lämpökameroiden käytön myös erittäin pienien kohteiden tarkastelussa. Luotettava absoluuttisten lämpötilojen selvittäminen lämpökameralla vaatii, että tarkasteltavan kohteen emissiivisyys on kauttaaltaan vakio ja tunnettu. Käytännössä erilaisten materiaalipintojen emissiivisyyksissä on merkittäviä eroja, mikä aiheuttaa virheitä mittaustuloksiin. Tutkimuksen tavoitteena oli löytää halpa ja käytännöllinen keino piirilevyn emissiivisyyden vakiointiin. Työssä kartoitettiin erilaisia pinnoitteita, joille tehtiin resistanssi-, impedanssi- sekä lämpökameramittaukset. Mittauksilla selvitettiin pinnoitteen soveltuvuus emissiivisyyden vakiointiin. Lisäksi tutustuttiin pintapuolisesti pinnoiteaineiden kemialliseen rakenteeseen, jotta saatiin peruskäsitys siitä, onko aineiden kemiallisella rakenteella merkitystä pinnoiteaineen emissiivisyyden vakiointikykyyn. Tutkimustulosten perusteella tutkituista pinnoitteista parhaaksi todettiin talkkijauhe. Talkkipinnoitteella saatiin luotettavia mittaustuloksia. Tällä hetkellä pinnoitemenetelmää voidaan käyttää yksittäisten piirilevyjen testauksessa laboratorio-olosuhteissa. Tulevaisuudessa menetelmää voitaisiin soveltaa myös piirilevyjen tuotantolinjalle.
Resumo:
The Plesiomonas shigelloides 302-73 strain (serotype O1) wb gene cluster encodes 15 proteins which are consistent with the chemical structure of the O1-antigen lypopolysaccharide (LPS) previously described for this strain. The P. shigelloides O1-antigen LPS export uses the Wzy-dependent pathway as correspond to heteropolysaccharides structures. By the isolation of two mutants lacking this O1-antigen LPS, we could establish that the presence of the O1-antigen LPS is crucial for to survive in serum mainly to become resistant to complement. Also, it is an important factor in the bacterial adhesion and invasion to some eukaryotic cells, and in the ability to form biofilms. This is the first report on the genetics from a P. shigelloides O-antigen LPS cluster (wb) not shared by Shigella like P. shigelloides O17, the only one reported until now.
Resumo:
The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied.
Resumo:
The molecular basis of modern therapeutics consist in the modulation of cell function by the interaction of microbioactive molecules as drug cells macromolecules structures. Molecular modeling is a computational technique developed to access the chemical structure. This methodology, by means of the molecular similarity and complementary paradigm, is the basis for the computer-assisted drug design universally employed in pharmaceutical research laboratories to obtain more efficient, more selective, and safer drugs. In this work, we discuss some methods for molecular modeling and some approaches to evaluate new bioactive structures in development by our research group.
Resumo:
NMR is now frequently the technique of choice for determination of chemical structure in solution. Its uses also span structure in solids and mobility at the molecular level in all phases. The research literature in the subject is vast and ever-increasing. Unfortunately, many articles do not contain sufficient information for experiments to be repeated elsewhere, and there are many variations in the usage of symbols for the same physical quantity. It is the aim of the present recommendations to provide simple check-lists that will enable such problems to be minimised in a way that is consistent with general IUPAC formulation. The area of medical NMR and imaging is not specifically addressed in these recommendations, which are principally aimed at mainstream use of NMR by chemists (of all sub-disciplines) and by many physicists, biologists, material scientists and geologists etc. working with NMR.
Resumo:
The influence of acidity on the synthesis and redox behavior of polypyrrole films was studied using galvanostatic and potentiodynamic techniques employing aqueous solutions formed by H2SO4/Na2SO4 , HCl/NaCl and HCl/CsCl. The chemical structure of the films were investigated using the FTIR technique. The polymer behavior as a function of the pH used in the cyclic voltammetric measurements is explained in terms of the mechanism responsible for the charge compensation formed during the polymer chain oxidation. From the FTIR measurements, it is seen that the water nucleophilic attack during the synthesis, does not occur under the experimental conditions employed in this work.
Resumo:
This paper describes the construction of a kit of molecular model for illustration of molecular structure in chemical class using cheap materials. The atoms were represented by plastic spheres and the bonds between the atoms were made from plastic straws which were cut in the required length using a scale of 1.6 cm corresponding to 100 pm. Examples of adaptations made in this kit for didactical application are given.
Resumo:
Rules for the occurence of the ambergris odor is presented and discussed in terms of the relationship between chemical structure and odor. A general overview of the major approaches in the synthesis of Ambrox® , the key ambergris-type compound, is also presented.
Resumo:
A model based on chemical structure was developed for the accurate prediction of octanol/water partition coefficient (K OW) of polychlorinated biphenyls (PCBs), which are molecules of environmental interest. Partial least squares (PLS) was used to build the regression model. Topological indices were used as molecular descriptors. Variable selection was performed by Hierarchical Cluster Analysis (HCA). In the modeling process, the experimental K OW measured for 30 PCBs by thin-layer chromatography - retention time (TLC-RT) has been used. The developed model (Q² = 0,990 and r² = 0,994) was used to estimate the log K OW values for the 179 PCB congeners whose K OW data have not yet been measured by TLC-RT method. The results showed that topological indices can be very useful to predict the K OW.
Resumo:
The effectiveness of microemulsions (ME) of saponified coconut oil (OCS-ME) and diphenylcarbazide (DC-ME) on a carbon steel corrosion inhibition process was evaluated using an electrochemical method of polarization resistance. The ME was prepared with OCS, butanol, kerosene and saline solutions. OCS-ME and DC-ME showed highest inhibitions effects (77% and 92%, respectively) at lower concentrations (0.5% and 0.48 - 0.50%, respectively). The surfactant OCS (in H2O) showed lower efficiency (63% at 0.20 - 0.25% concentration). The greatest inhibitory effect of DC-ME could be correlated with the chemical structure and the rich O/W ME system, which are very important for adsorption phenomena in interfacial ME systems.