996 resultados para Channel engineering
Resumo:
International audience
Resumo:
Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.
Resumo:
Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.
Resumo:
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.
Resumo:
Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.
Resumo:
Currently, the acoustic and nanoindentation techniques are two of the most used techniques for material elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nanoindentation technique are also reviewed. An experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nanoindentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained.
Resumo:
Over the last couple of decades, many methods for synchronizing chaotic systems have been proposed with communications applications in view. Yet their performance has proved disappointing in face of the nonideal character of usual channels linking transmitter and receiver, that is, due to both noise and signal propagation distortion. Here we consider a discrete-time master-slave system that synchronizes despite channel bandwidth limitations and an allied communication system. Synchronization is achieved introducing a digital filter that limits the spectral content of the feedback loop responsible for producing the transmitted signal. Copyright (C) 2009 Marcio Eisencraft et al.
Resumo:
Large-conductance Ca(2+)-activated K(+) channels (BK) play a fundamental role in modulating membrane potential in many cell types. The gating of BK channels and its modulation by Ca(2+) and voltage has been the subject of intensive research over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between states in the same plane are cooperative and modulated by Ca(2+). Transitions across planes are highly concerted and voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by Ca(2+). Large single channel data sets at five Ca(2+) concentrations were simultaneously analyzed from a Bayesian perspective by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for homotetramers, able to explain the Ca(2+) modulation of the gating process. This model differs from the standard Monod-Wyman-Changeux scheme in that one distinguishes when two Ca(2+) ions are bound to adjacent or diagonal subunits of the tetramer.
Resumo:
Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.
Resumo:
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.
Resumo:
We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I(AA), in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
Background: The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings: Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca(2+) induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K(+) transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoK(ATP) activation. Conclusions/Significance: We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoK(ATP) activation.