861 resultados para Channel capacity and propagation modelling
Resumo:
In this paper, the results of the time dispersion parameters obtained from a set of channel measurements conducted in various environments that are typical of multiuser Infostation application scenarios are presented. The measurement procedure takes into account the practical scenarios typical of the positions and movements of the users in the particular Infostation network. To provide one with the knowledge of how much data can be downloaded by users over a given time and mobile speed, data transfer analysis for multiband orthogonal frequency division multiplexing (MB-OFDM) is presented. As expected, the rough estimate of simultaneous data transfer in a multiuser Infostation scenario indicates dependency of the percentage of download on the data size, number and speed of the users, and the elapse time.
Resumo:
Introduction β-alanine (BAl) and NaHCO3 (SB) ingestion may provide performance benefits by enhancing concentrations of their respective physiochemical buffer counterparts, muscle carnosine and blood bicarbonate, counteracting acidosis during intense exercise. This study examined the effect of BAl and SB co-supplementation as an ergogenic strategy during high-intensity exercise. Methods Eight healthy males ingested either BAl (4.8 g day−1 for 4 weeks, increased to 6.4 g day−1 for 2 weeks) or placebo (Pl) (CaCO3) for 6 weeks, in a crossover design (6-week washout between supplements). After each chronic supplementation period participants performed two trials, each consisting of two intense exercise tests performed over consecutive days. Trials were separated by 1 week and consisted of a repeated sprint ability (RSA) test and cycling capacity test at 110 % Wmax (CCT110 %). Placebo (Pl) or SB (300 mg kgbw−1) was ingested prior to exercise in a crossover design to creating four supplement conditions (BAl-Pl, BAl-SB, Pl–Pl, Pl-SB). Results Carnosine increased in the gastrocnemius (n = 5) (p = 0.03) and soleus (n = 5) (p = 0.02) following BAl supplementation, and Pl-SB and BAl-SB ingestion elevated blood HCO3 − concentrations (p < 0.01). Although buffering capacity was elevated following both BAl and SB ingestion, performance improvement was only observed with BAl-Pl and BAl-SB increasing time to exhaustion of the CCT110 % test 14 and 16 %, respectively, compared to Pl–Pl (p < 0.01). Conclusion Supplementation of BAl and SB elevated buffering potential by increasing muscle carnosine and blood bicarbonate levels, respectively. BAl ingestion improved performance during the CCT110 %, with no aggregating effect of SB supplementation (p > 0.05). Performance was not different between treatments during the RSA test.
Resumo:
This thesis investigates the use of fusion techniques and mathematical modelling to increase the robustness of iris recognition systems against iris image quality degradation, pupil size changes and partial occlusion. The proposed techniques improve recognition accuracy and enhance security. They can be further developed for better iris recognition in less constrained environments that do not require user cooperation. A framework to analyse the consistency of different regions of the iris is also developed. This can be applied to improve recognition systems using partial iris images, and cancelable biometric signatures or biometric based cryptography for privacy protection.
Resumo:
A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.
Resumo:
Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.
Resumo:
Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.
Resumo:
Development of 3D functional structural plant models for macadamias and other tropical fruit and nuts.
Resumo:
This paper develops theory that quantifies transit route passenger-relative load factor and distinguishes it from occupancy load factor. The ratio between these measures is defined as the load diversity coefficient, which as a single measure characterizes the diversity of passenger load factor between route segments according to the origin-destination profile. The relationship between load diversity coefficient and route coefficient of variation in occupancy load factor is quantified. Two tables are provided that enhance passenger capacity and quality of service (QoS) assessment regarding onboard passenger load. The first expresses the transit operator’s perspective of load diversity and the passengers’ perspective of load factor relative to the operator’s, across six service levels corresponding to ranges of coefficient of variation in occupancy load factor. The second interprets the relationships between passenger average travel time and each of passenger-relative load factor and occupancy load factor. The application of this methodology is illustrated using a case study of a premium radial bus route in Brisbane, Australia. The methodology can assist in benchmarking and decision making regarding route and schedule design. Future research will apply value of time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent aboard. This would also assist in transit service quality econometric modeling.
Resumo:
This poster introduces Passenger Relative Load Factor for a route or individual bus service as a capacity and quality of service measure, distinguishing it from Occupancy Load Factor. It introduces Load Diversity Coefficient as the ratio of Passenger Relative Load Factor to Occupancy Load Factor, and relates Load Diversity Coefficient to Coefficient of Variation in Occupancy Load Factor. It qualifies the operator’s and passengers’ perspectives of load factor based on Coefficient of Variation in Occupancy Load Factor along a route. A case study using weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia illustrates the methodology. The compendium paper also qualifies the operator’s and passengers’ perspectives of these load factors along with Passengers’ Average Travel Time for capacity and quality of service assessment.
Resumo:
Ca2+ ions are absolutely necessary for the propagation of mycobacteriophage I3 in synthetic medium. These ions are required for successful infection of the host and during the entire span of the intracellular development of the phage. A direct assay of the phage DNA injection using 32[P] labelled phage, showns that Ca2+ ions are necessary for the injection process. The injection itself is a slow process and takes 15 min to complete at 37°C. The bacteria infected in presence of Ca2+ tend to abort if the ions are subsequently withdrawn from the growth medium. The effect of calcium withdrawal is maximally felt during the early part of the latent period; however, later supplementation of Ca2+ ions salvage phage production and the mature phage progeny appear after a delayed interval, proportional to the time of addition of Ca2+.
Resumo:
Pasture rest is a possible strategy for improving land condition in the extensive grazing lands of northern Australia. If pastures currently in poor condition could be improved, then overall animal productivity and the sustainability of grazing could be increased. The scientific literature is examined to assess the strength of the experimental information to support and guide the use of pasture rest, and simulation modelling is undertaken to extend this information to a broader range of resting practices, growing conditions and initial pasture condition. From this, guidelines are developed that can be applied in the management of northern Australia’s grazing lands and also serve as hypotheses for further field experiments. The literature on pasture rest is diverse but there is a paucity of data from much of northern Australia as most experiments have been conducted in southern and central parts of Queensland. Despite this, the limited experimental information and the results from modelling were used to formulate the following guidelines. Rest during the growing season gives the most rapid improvement in the proportion of perennial grasses in pastures; rest during the dormant winter period is ineffective in increasing perennial grasses in a pasture but may have other benefits. Appropriate stocking rates are essential to gain the greatest benefit from rest: if stocking rates are too high, then pasture rest will not lead to improvement; if stocking rates are low, pastures will tend to improve without rest. The lower the initial percentage of perennial grasses, the more frequent the rests should be to give a major improvement within a reasonable management timeframe. Conditions during the growing season also have an impact on responses with the greatest improvement likely to be in years of good growing conditions. The duration and frequency of rest periods can be combined into a single value expressed as the proportion of time during which resting occurs; when this is done the modelling suggests the greater the proportion of time that a pasture is rested, the greater is the improvement but this needs to be tested experimentally. These guidelines should assist land managers to use pasture resting but the challenge remains to integrate pasture rest with other pasture and animal management practices at the whole-property scale.