883 resultados para Changing Permafrost in the Arctic and its Global Effects in the 21st Century


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to projected increases in global mean sea level over the 21st century, model simulations suggest there will also be changes in the regional distribution of sea level relative to the global mean. There is a considerable spread in the projected patterns of these changes by current models, as shown by the recent Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (AR4). This spread has not reduced from that given by the Third Assessment models. Comparison with projections by ensembles of models based on a single structure supports an earlier suggestion that models of similar formulation give more similar patterns of sea level change. Analysing an AR4 ensemble of model projections under a business-as-usual scenario shows that steric changes (associated with subsurface ocean density changes) largely dominate the sea level pattern changes. The relative importance of subsurface temperature or salinity changes in contributing to this differs from region to region and, to an extent, from model-to-model. In general, thermosteric changes give the spatial variations in the Southern Ocean, halosteric changes dominate in the Arctic and strong compensation between thermosteric and halosteric changes characterises the Atlantic. The magnitude of sea level and component changes in the Atlantic appear to be linked to the amount of Atlantic meridional overturning circulation (MOC) weakening. When the MOC weakening is substantial, the Atlantic thermosteric patterns of change arise from a dominant role of ocean advective heat flux changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the 20th century, solar activity increased in magnitude to a so-called grand maximum. It is probable that this high level of solar activity is at or near its end. It is of great interest whether any future reduction in solar activity could have a significant impact on climate that could partially offset the projected anthropogenic warming. Observations and reconstructions of solar activity over the last 9000 years are used as a constraint on possible future variations to produce probability distributions of total solar irradiance over the next 100 years. Using this information, with a simple climate model, we present results of the potential implications for future projections of climate on decadal to multidecadal timescales. Using one of the most recent reconstructions of historic total solar irradiance, the likely reduction in the warming by 2100 is found to be between 0.06 and 0.1 K, a very small fraction of the projected anthropogenic warming. However, if past total solar irradiance variations are larger and climate models substantially underestimate the response to solar variations, then there is a potential for a reduction in solar activity to mitigate a small proportion of the future warming, a scenario we cannot totally rule out. While the Sun is not expected to provide substantial delays in the time to reach critical temperature thresholds, any small delays it might provide are likely to be greater for lower anthropogenic emissions scenarios than for higher-emissions scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monthly averaged surface erythemal solar irradiance (UV-Ery) for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM), as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average 12% lower at high latitudes in both hemispheres, 3% lower at mid latitudes, and marginally higher (1 %) in the tropics. The largest reduction (16 %) is projected for Antarctica in October. Cloud effects are responsible for 2–3% of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (1 %). The year of return of erythemal irradiance to values of certain milestones (1965 and 1980) depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lower stratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Cly near 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease to 1980 values and before the Antarctic. None of the CCMs predict future large decreases in the Arctic column ozone. By 2100, total column ozone is projected to be substantially above 1980 values in all regions except in the tropics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the influence of articles, authors, journals and institutions in the field of environmental and ecological economics. We depart from studies that investigated the literature until 2001 and include a time period that has witnessed an enormous increase of importance in the field. We adjust for the age effect given the huge impact of the year of an article's publication on its influence and we show that this adjustment does make a substantial difference — especially for disaggregated units of analysis with diverse age characteristics such as articles or authors. We analyse 6597 studies on environmental and ecological economics published between 2000 and 2009. We provide rankings of the influential articles, authors, journals and institutions and find that Ecological Economics, Energy Economics and the Journal of Environmental Economics and Management have the most influential articles, they publish very influential authors and their articles are cited most. The University of Maryland, Resources for the Future, the University of East Anglia and the World Bank appear to be the most influential institutions in the field of environmental and ecological economics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the influence of articles, authors, journals and institutions in the field of environmental and ecological economics. We depart from studies that investigated the literature until 2001 and include a time period that has witnessed an enormous increase of importance in the field. We adjust for the age effect given the huge impact of the year of an article's publication on its influence and we show that this adjustment does make a substantial difference — especially for disaggregated units of analysis with diverse age characteristics such as articles or authors. We analyse 6597 studies on environmental and ecological economics published between 2000 and 2009. We provide rankings of the influential articles, authors, journals and institutions and find that Ecological Economics, Energy Economics and the Journal of Environmental Economics and Management have the most influential articles, they publish very influential authors and their articles are cited most. The University of Maryland, Resources for the Future, the University of East Anglia and the World Bank appear to be the most influential institutions in the field of environmental and ecological economics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes some of the current transformations regarding the processes by which information and culture are generated, from the point of view of developing countries. In this brief analysis, the article discusses the role of projects such as Creative Commons for developing countries. It also discusses the idea of legal commons and social commons. While the idea of legal commons can be understood as the voluntary use of licenses such as Creative Commons in order to create a “commons”, the idea of social commons has to do with the tensions between legality and illegality in developing countries. These tensions appear prominently in the so-called global “peripheries”, and in many instances make the legal structure of intellectual property irrelevant, unfamiliar, or unenforceable, for various reasons. With the emergence of digital technology and the Internet, in many places and regions in developing countries (especially in the “peripheries”), technology ended up arriving earlier than the idea of intellectual property. Such a de facto situation propitiated the emergence of cultural industries that were not driven by intellectual property incentives. In these cultural businesses, the idea of “sharing” and of free dissemination of the content is intrinsic to the social circumstances taking place in these peripheries. Also, the appropriation of technology on the part of the “peripheries” ends up promoting autonomous forms of bridging the digital divide, such as the “LAN house” phenomenon discussed below. This paper proposes that many lessons can be learned from the business models emerging from social commons practices in developing countries. The tension between legality and illegality in “peripheral” areas in developing countries is not new. The work of Boaventura de Sousa Santos and others in the 1970s was paradigmatic for the discussion of legal pluralism regarding the occupation of land in Brazil. This paper aims to follow in that same pioneer tradition of studies about legal pluralism, and to apply those principles to the discussion of “intellectual property” rather than the ownership of land.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work, studied the effect of 0, 1,000, 1,500 and 2,000 mg of garlic powder/kg dry ration for Piaractus mesopotamicus (Osteichthyes Characidae), weighting 73.6+/-39.4 9 and measuring 15.0+/-2.7 cm, fed for a period of 15, 30 and 45 days. Fifteen days after treatment with 1,000 and 2,000 Prig of garlic/kg dry ration, significant reduction of Anacanthorus penilabiatus (Monogenea: Dactylogyridae) in the gills was related. Nevertheless, the addition of garlic to the ration caused significant increase in the erythrocyte number and in the thrombocyte percentage in the circulating blood. However, a decrease in the lymphocyte percentage was also observed. After 45 days, fish fed with garlic showed significant increase in the erythrocyte number, leucocyte, haemoglobin rate, hematocrit and thrombocyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union (EU) is widely acknowledged as a successful example of economic and political integration of nation states today – a slate of democratic institutions such as the European Parliament have also been developed and European citizens now possess extensive political and civil rights by virtue of the introduction of European citizenship. Nevertheless, the EU is said to suffer from a so called “democratic deficit” even as it seeks deeper and closer integration. Decades of institutional design and elite closed-door decisions has taken its toll on the inclusion and integration of European citizens in social and political life, with widening socio-economic inequalities and the resurgence of extreme-right parties during in the wake of the debt crisis in the Eurozone. This paper attempts to evaluate the democratic development of the EU through the use of a process-oriented approach, and concludes at the end with discussions on the various options that the EU and its citizens can take to reform democratic processes and institutions in Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.