343 resultados para Ceriodaphnia silvestri


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drusen are small focal extracellular deposits underneath the retina, visible ophthalmoscopically as yellow dots. The more hard drusen there are, the greater the risk of developing soft drusen and retinal pigmentary changes, which in turn increase the risk of developing advanced age-related macular degeneration. Much remains to be discovered about drusen. For the patient with drusen, basic advice on diet and smoking and maintenance of a high level of vigilance for visual changes is appropriate management. © The Author 2009. Published by Oxford University Press [on behalf of the British Geriatrics Society]. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: A non-synonymous single nucleotide polymorphism ( SNP) in complement component 3 has been shown to increase the risk of age-related macular degeneration (AMD). We assess its effect on AMD risk in a Northern Irish sample, test for gene-gene and gene-environment interaction, and review a risk prediction model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To use preferential hyperacuity perimetry to obtain a quantitative measure of central visual field distortion that would aid in the monitoring of functional responsiveness to ranibizumab treatment.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Retinitis pigmentosa (RP) causes hereditary blindness in adults (prevalence, approximately 1 in 4000). Each of the more than 30 causative genes identified to date are responsible for only a small percentage of cases. Genetic diagnosis via traditional methods is problematic, and a single test with a higher probability of detecting the causative mutation would be very beneficial for the clinician. The goal of this study therefore was to develop a high-throughput screen capable of detecting both known mutations and novel mutations within all genes implicated in autosomal recessive or simplex RP. DESIGN: Evaluation of diagnostic technology. PARTICIPANTS AND CONTROLS: Participants were 56 simplex and autosomal recessive RP patients, with 360 population controls unscreened for ophthalmic disease. METHODS: A custom genechip capable of resequencing all exons containing known mutations in 19 disease-associated genes was developed (RP genechip). A second, commercially available arrayed primer extension (APEX) system was used to screen 501 individual previously reported variants. The ability of these high-throughput approaches to identify pathogenic variants was assessed in a cohort of simplex and autosomal recessive RP patients. MAIN OUTCOME MEASURES: Number of mutations and potentially pathogenic variants identified. RESULTS: The RP genechip identified 44 sequence variants: 5 previously reported mutations; 22 known single nucleotide polymorphisms (SNPs); 11 novel, potentially pathogenic variants; and 6 novel SNPs. There was strong concordance with the APEX array, but only the RP genechip detected novel variants. For example, identification of a novel mutation in CRB1 revealed a patient, who also had a single previously known CRB1 mutation, to be a compound heterozygote. In some individuals, potentially pathogenic variants were discovered in more than one gene, consistent with the existence of disease modifier effects resulting from mutations at a second locus. CONCLUSIONS: The RP genechip provides the significant advantage of detecting novel variants and could be expected to detect at least one pathogenic variant in more than 50% of patients. The APEX array provides a reliable method to detect known pathogenic variants in autosomal recessive RP and simplex RP patients and is commercially available. High-throughput genotyping for RP is evolving into a clinically useful genetic diagnostic tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:
The genetic heterogeneity of many Mendelian disorders, such as retinitis pigmentosa which results from mutations in over 40 genes, is a major obstacle to obtaining a molecular diagnosis in clinical practice. Targeted high-throughput DNA sequencing offers a potential solution and was used to develop a molecular diagnostic screen for patients with retinitis pigmentosa.
METHODS:
A custom sequence capture array was designed to target the coding regions of all known retinitis pigmentosa genes and used to enrich these sequences from DNA samples of five patients. Enriched DNA was subjected to high-throughput sequencing singly or in pools, and sequence variants were identified by alignment of up to 10 million reads per sample to the normal reference sequence. Potential pathogenicity was assessed by functional predictions and frequency in controls.
RESULTS AND CONCLUSIONS:
Known homozygous PDE6B and compound heterozygous CRB1 mutations were detected in two patients. A novel homozygous missense mutation (c.2957A?T; p.N986I) in the cyclic nucleotide gated channel ß1 (CNGB1) gene predicted to have a deleterious effect and absent in 720 control chromosomes was detected in one case in which conventional genetic screening had failed to detect mutations. The detection of known and novel retinitis pigmentosa mutations in this study establishes high-throughput DNA sequencing with DNA pooling as an effective diagnostic tool for heterogeneous genetic diseases.