900 resultados para Central nervous system.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To perform their distinct effector functions, pathogen-specific T cells have to migrate to target tissue where they recognize antigens and produce cytokines that elicit appropriate types of protective responses. Similarly, migration of pathogenic self-reactive T cells to target organs is an essential step required for tissue-specific autoimmunity. In this article, we review data from our laboratory as well as other laboratories that have established that effector function and migratory capacity are coordinately regulated in different T-cell subsets. We then describe how pathogenic T cells can enter into intact or inflamed central nervous system (CNS) to cause experimental autoimmune encephalomyelitis or multiple sclerosis. In particular, we elaborate on the role of CCR6/CCL20 axis in migration through the choroid plexus and the involvement of this pathway in immune surveillance of and autoimmunity in the CNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We sought to determine whether a high-risk group could be defined among patients with operable breast cancer in whom a search of occult central nervous system (CNS) metastases was justified. PATIENTS AND METHODS: We evaluated data from 9524 women with early breast cancer (42% node-negative) who were randomized in International Breast Cancer Study Group clinical trials between 1978 and 1999, and treated without anthracyclines, taxanes, or trastuzumab. We identified patients whose site of first event was CNS and those who had a CNS event at any time. RESULTS: Median follow-up was 13 years. The 10-year incidence (10-yr) of CNS relapse was 5.2% (1.3% as first recurrence). Factors predictive of CNS as first recurrence included: node-positive disease (10-yr = 2.2% for > 3 N+), estrogen receptor-negative (2.3%), tumor size > 2 cm (1.7%), tumor grade 3 (2.0%), < 35 years old (2.2%), HER2-positive (2.7%), and estrogen receptor-negative and node-positive (2.6%). The risk of subsequent CNS recurrence was elevated in patients experiencing lung metastases (10-yr = 16.4%). CONCLUSION: Based on this large cohort we were able to define risk factors for CNS metastases, but could not define a group at sufficient risk to justify routine screening for occult CNS metastases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined whether experimental pneumococcal meningitis induced the 72-kd heat shock protein (HSP72), a sensitive marker of neuronal stress in other models of central nervous system (CNS) injury. Brain injury was characterized by vasculitis, cerebritis, and abscess formation in the cortex of infected animals. The extent of these changes correlated with the size of the inoculum (P less than 0.003) and with pathophysiologic parameters of disease severity, i.e., cerebrospinal fluid (CSF) lactate (r = 0.61, P less than 0.0001) and CSF glucose concentrations (r = -0.55, P less than 0.0001). Despite the presence of numerous cortical regions having morphologic evidence of injury, HSP72 was not detected in most animals. When present, only rare neurons were HSP72 positive. Western blot analysis of brain samples confirmed the paucity of HSP72 induction. The lack of neuronal HSP72 expression in this model suggests that at least some of the events leading to neuronal injury in meningitis are unique, when compared with CNS diseases associated with HSP72 induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine system plays a key role in cellular energy buffering and energy transport, particularly in cells with high and fluctuating energy requirements like neurons. Creatine kinases are expressed in the adult and developing human brain and spinal cord, suggesting that the creatine kinase/phosphocreatine system plays a significant role in the central nervous system. Functional impairment of this system leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. Exogenous creatine supplementation has been shown to reduce neuronal cell loss in experimental paradigms of acute and chronic neurological diseases. In line with these findings, first clinical trials have shown beneficial effects of therapeutic creatine supplementation. Furthermore, creatine was reported to promote differentiation of neuronal precursor cells that might be of importance for improving neuronal cell replacement strategies. Based on these observations there is growing interest on the effects and functions of this compound in the central nervous system. This review gives a short excursion into the basics of the creatine kinase/phosphocreatine system and aims at summarizing findings and concepts on the role of creatine kinase and creatine in the central nervous system with special emphasis on pathological conditions and the positive effects of creatine supplementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the highly specialized endothelial blood-brain barrier (BBB) and gain access to the central nervous system (CNS). It is well established that leukocyte recruitment across this vascular bed is unique due to the predominant involvement of alpha4-integrins in mediating the initial contact to as well as firm adhesion with the endothelium. In contrast, the involvement of the selectins, L-selectin, E- and P-selectin and their respective carbohydrate ligands such as P-selectin glycoprotein (PSGL)-1 in this process has been controversially discussed. Intravital microscopic analysis of immune cell interaction with superficial brain vessels demonstrates a role for E- and P-selectin and their common ligand PSGL-1 in lymphocyte rolling. However, E- and P-selectin-deficient SJL- or C57Bl/6 mice or PSGL-1-deficient C57Bl/6 mice develop EAE indistinguishable from wild-type mice. Considering these apparently discrepant observations, it needs to be discussed whether the molecular mechanisms involved in leukocyte trafficking across superficial brain vessels are irrelevant for EAE pathogenesis or whether the therapeutic efficacy of targeting alpha4-integrins in EAE is truly dependent on the inhibition of leukocyte trafficking across the BBB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: In fetal ultrasound imaging, teaching and experience are of paramount importance to improve prenatal detection rates of fetal abnormalities. Yet both aspects depend on exposure to normal and, in particular, abnormal 'specimens'. We aimed to generate a number of simple virtual reality (VR) objects of the fetal central nervous system for use as educational tools. METHODS: We applied a recently proposed algorithm for the generation of fetal VR object movies to the normal and abnormal fetal brain and spine. Interactive VR object movies were generated from ultrasound volume data from normal fetuses and fetuses with typical brain or spine anomalies. Pathognomonic still images from all object movies were selected and annotated to enable recognition of these features in the object movies. RESULTS: Forty-six virtual reality object movies from 22 fetuses (two with normal and 20 with abnormal brains) were generated in an interactive display format (QuickTime) and key images were annotated. The resulting .mov files are available for download from the website of this journal. CONCLUSIONS: VR object movies can be generated from educational ultrasound volume datasets, and may prove useful for teaching and learning normal and abnormal fetal anatomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of 54 children with acute lymphoblastic leukemia (ALL) and first hematological recurrence observed between 1985 and 1989, 31 relapsed while still on treatment and 23 after cessation of therapy. Of the former, only one survived. Of the latter, 11 children survived after a minimum follow-up of 25 months. During the same period, a first isolated testicular relapse was observed in nine boys, of whom six survived, and an isolated CNS relapse in eight patients, of whom three survived. As a rule, survivors of a bone marrow or testicular relapse were doing well while those surviving a CNS relapse had considerable neuropsychological sequelae. These results, compared with those of two preceding studies, suggest that with intensification of front-line treatments, it becomes more difficult to rescue children who relapse, particularly those with a bone marrow relapse while on therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progesterone secretion is crucial for maintaining pregnancy to parturition in mammalian species, and in cattle the corpus luteum is the primary source of this hormone. This study determined the roles of prolactin (PRL), growth hormone (GH) and luteinizing hormone (LH) in the luteotropic process in beef heifers hypophyseal stalk-transected (HST, n = 7) or sham operated on (SOC, n = 9) during midgestation. The main finding was that endogenous PRL and GH maintained progesterone secretion in HST heifers similar to that in SOC throughout pregnancy. Serum PRL averaged 37 vs 187 and GH 2 vs 4 ng/ml in HST compared with SOC, whereas LH abruptly decreased to undetectable levels after HST compared with a modest 0A4 ng/ml in SOC heifers. The second finding was that parturition and lactation occurred in HST heifers with calf delivery induced to occur at the same time as SOC. Milk production in HST animals was severely limited, and postpartum estrus obliterated compared with SOC. The suckling stimulus sustained milk ejection in HST heifers in spite of diminished PRL and GH secretion. The results suggest that PRL, GH and possibly placental lactogen are luteotropic during pregnancy in cattle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progesterone secretion is crucial for maintaining pregnancy to parturition in mammalian species, and in cattle the corpus luteum is the primary source of this hormone. This study determined the roles of prolactin (PRL), growth hormone (GH) and luteinizing hormone (LH) in the luteotropic process in beef heifers hypophyseal stalk-transected (HST, n = 7) or sham operated on (SOC, n = 9) during midgestation. The main finding was that endogenous PRL and GH maintained progesterone secretion in HST heifers similar to that in SOC throughout pregnancy. Serum PRL averaged 37 vs. 187 and GH 2 vs. 4 ng/ml in HST compared with SOC, whereas LH abruptly decreased to undetectable levels after HST compared with a modest 0.4 ng/ml in SOC heifers. The second finding was that parturition and lactation occurred in HST heifers with calf delivery induced to occur at the same time as SOC. Milk production in HST animals was severely limited and postpartum estrus obliterated compared with SOC. The suckling stimulus sustained milk ejection in HST heifers in spite of diminished PRL and GH secretion. The results suggest that PRL, GH, and possibly placental lactogen are luteotropic during pregnancy in cattle.