927 resultados para Central auditory processing disorder


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is emerging that whiplash-associated disorder (WAD) is a complex condition characterised by a variety of physical and psychological features. Generalised sensory hypersensitivity is one of these features and its presence reflects augmented central pain processing mechanisms. Whilst most studies have investigated these processes in chronic WAD, it is becoming clear that in some of the whiplash injured, sensory disturbances are present from soon after injury, and are associated with both poor recovery and recalcitrance to multimodal physiotherapy interventions. Evidence for sensory hypersensitivity in WAD and possible underlying mechanisms of these phenomena are reviewed. Physiotherapists play an important role in the evaluation and management of whiplash injury. It is important that sensory disturbances be identified early in the clinical assessment of the whiplash injured patient and that ensuing management strategies address these changes, if the aim of treatment is to prevent the transition to chronicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate sensory changes present in patients with chronic whiplash-associated disorders and chronic idiopathic neck pain using a variety of quantitative sensory tests to better understand the pain processing mechanisms underlying persistent symptoms. Methods: A case control study was used with 29 subjects with chronic whiplash-associated disorders, 20 subjects with chronic idiopathic neck pain, and 20 pain-free volunteers. Pressure pain thresholds were measured over the articular pillars of C2-C3, C5-C6, the median, radial, and ulnar nerve trunks in the arm and over a remote site, the muscle belly of tibialis anterior. Heat pain thresholds, cold pain thresholds, and von Frey hair sensibility were measured over the cervical spine, tibialis anterior, and deltoid insertion. Anxiety was measured with the Short-Form of the Spielberger State Anxiety Inventory. Results: Pressure pain thresholds were decreased over cervical spine sites in both subject groups when compared with controls (P < 0.05). In the chronic whiplash-associated disorders group, pressure pain thresholds were also decreased over the tibialis anterior, median, and radial nerve trunks (P < 0.001). Heat pain thresholds were decreased and cold pain thresholds increased at all sites (P < 0.03). No differences in heat pain thresholds or cold pain thresholds were evident in the idiopathic neck pain group at any site compared with the control group (P > 0.27). No abnormalities in von Frey hair sensibility were evident in either neck pain group (P > 0.28). Discussion: Both chronic whiplash-associated disorders and idiopathic neck pain groups were characterized by mechanical hyperalgesia over the cervical spine. Whiplash subjects showed additional widespread hypersensitivity to mechanical pressure and thermal stimuli, which was independent of state anxiety and may represent changes in central pain processing mechanisms. This may have implications for future treatment approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auditory Training (AT) describes a regimen of varied listening exercises designed to improve an individual’s ability to perceive speech. The theory of AT is based on brain plasticity (the capacity of neurones in the central auditory system to alter their structure and function) in response to auditory stimulation. The practice of repeatedly listening to the speech sounds included in AT exercises is believed to drive the development of more efficient neuronal pathways, thereby improving auditory processing and speech discrimination. This critical review aims to assess whether auditory training can improve speech discrimination in adults with mild-moderate SNHL. The majority of patients attending Audiology services are adults with presbyacusis and it is therefore important to evaluate evidence of any treatment effect of AT in aural rehabilitation. Ideally this review would seek to appraise evidence of neurophysiological effects of AT so as to verify whether it does induce change in the CAS. However, due to the absence of such studies on this particular patient group, the outcome measure of speech discrimination, as a behavioural indicator of treatment effect is used instead. A review of available research was used to inform an argument for or against using AT in rehabilitative clinical practice. Six studies were identified and although the preliminary evidence indicates an improvement gained from a range of AT paradigms, the treatment effect size was modest and there remains a lack of large-sample RCTs. Future investigation into the efficacy of AT needs to employ neurophysiological studies using auditory evoked potentials in hearing-impaired adults in order to explore effects of AT on the CAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in pediatric central nervous system pathophysiology is focused around three primary goals: identification of neurodevelopmental disorders, understanding the differences in brain development which underlie these disorders, and improving treatment for these young children. Autism spectrum disorders (ASDs) are a complex set of disorders which are characterized by difficulties in language and social interactions. These behavioral measures are highly variable and a number of underlying causes can generate similar behavioral effects. Therefore, it is important to identify neurophysiological markers to better identify and characterize these disorders. Recent ASD findings using MEG show atypical latency and amplitude responses and poor cortical connectivity in children with ASDs across the cognitive spectrum from basic auditory processing, multisensory integration, to face and semantic processing. These results further support the view that ASDs are a complex neurologically-based disorder. On the other hand, the cause of Down syndrome is well understood as originating from a partial or full replication of chromosome 21. However, the cognitive and neurological consequences of this chromosomal abnormality are not yet well understood. Using a simple observation and motor execution task, poor functional connectivity in sensory-motor areas, particularly in the gamma band range, has been identified in children with Down syndrome and is consistent with behavioral deficits in the sensory-motor realm. Additional studies are needed to better understand whether targeted identification of these abnormalities can facilitate treatment in this disorder. Finally, while epilepsy can be reliably diagnosed, seizure control is still limited in many cases where the seizure onset zone is not readily apparent. Advances in pre-surgical evaluation and intra-operative co-registration will be described. These studies describing pediatric CNS pathophysiology will be discussed. © Springer-Verlag 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Older adults frequently report that they can hear what they have been told but cannot understand the meaning. This is particularly true in noisy conditions, where the additional challenge of suppressing irrelevant noise (i.e. a competing talker) adds another layer of difficulty to their speech understanding. Hearing aids improve speech perception in quiet, but their success in noisy environments has been modest, suggesting that peripheral hearing loss may not be the only factor in the older adult’s perceptual difficulties. Recent animal studies have shown that auditory synapses and cells undergo significant age-related changes that could impact the integrity of temporal processing in the central auditory system. Psychoacoustic studies carried out in humans have also shown that hearing loss can explain the decline in older adults’ performance in quiet compared to younger adults, but these psychoacoustic measurements are not accurate in describing auditory deficits in noisy conditions. These results would suggest that temporal auditory processing deficits could play an important role in explaining the reduced ability of older adults to process speech in noisy environments. The goals of this dissertation were to understand how age affects neural auditory mechanisms and at which level in the auditory system these changes are particularly relevant for explaining speech-in-noise problems. Specifically, we used non-invasive neuroimaging techniques to tap into the midbrain and the cortex in order to analyze how auditory stimuli are processed in younger (our standard) and older adults. We will also attempt to investigate a possible interaction between processing carried out in the midbrain and cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long latency auditory evoked potentials (LLAEP) alterations in individuals with tinnitus are suggestive of dysfunction in the central auditory pathways at a cortical level. Aim: to characterize the LLAEP in individuals with and without tinnitus exposed to occupational noise. Method: Cross-sectional contemporary cohort, prospective study. Sixty subjects exposed to occupational noise, ranging in age from 29 to 50 years underwent LLAEP assessment; 30 of them had tinnitus complaint and 30 did not have tinnitus. Results: we observed significant statistical difference regarding the mean values of latencies of waves N1 (p<0.001), P2 (p=0.002) and P300 (p=0.039) when we compared individuals with and without tinnitus. In individuals with tinnitus we also noticed a greater number of altered results concerning components N1 (60%) and P2 (66.7%), although only component P2 presented significant statistical difference (p=0.010). For the LLAEP, the latency increase was the only type of alteration found (p=1.000). We found a greater association between bilateral tinnitus and bilateral alteration for all components N1(73%), P2(73%) and P300(50%). Conclusion: It is relevant to study LLAEP in individuals with tinnitus exposed to high occupational sound pressure levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty-two pouch-young tammar wallabies were used to discover the generators of the auditory brainstem response (ABR) during development by the use of simultaneous ABR and focal brainstem recordings. A click response from the auditory nerve root (ANR) in the wallaby was recorded from postnatal day (PND) 101, when no central auditory station was functional, and coincided with the ABR, a simple positive wave. The response of the cochlear nucleus (CN) was detected from PND 110, when the ABR had developed 1 positive and 1 negative peak. The dominant component of the focal ANR response, the N-1 wave, coincided with the first half of the ABR P wave, and that of the focal CN response, the N-1 wave, coincided with the later two thirds. In older animals, the ANR response coincided with the ABR's N-1, wave, while the CN response coincided with the ABR's P-2, N-2 and P-3 waves, with its contribution to the ABR P-2 dominant. The protracted development of the marsupial auditory system which facilitated these correlations makes the tammar wallaby a particularly suitable model. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relation of automatic auditory discrimination, measured with MMN, with the type of stimuli has not been well established in the literature, despite its importance as an electrophysiological measure of central sound representation. In this study, MMN response was elicited by pure-tone and speech binaurally passive auditory oddball paradigm in a group of 8 normal young adult subjects at the same intensity level (75 dB SPL). The frequency difference in pure-tone oddball was 100 Hz (standard = 1 000 Hz; deviant = 1 100 Hz; same duration = 100 ms), in speech oddball (standard /ba/; deviant /pa/; same duration = 175 ms) the Portuguese phonemes are both plosive bi-labial in order to maintain a narrow frequency band. Differences were found across electrode location between speech and pure-tone stimuli. Larger MMN amplitude, duration and higher latency to speech were verified compared to pure-tone in Cz and Fz as well as significance differences in latency and amplitude between mastoids. Results suggest that speech may be processed differently than non-speech; also it may occur in a later stage due to overlapping processes since more neural resources are required to speech processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Accurate registration of the relative timing between the occurrence of sensory events on a sub-second time scale is crucial for both sensory-motor and cognitive functions (Mauk and Buonomano, 2004; Habib, 2000). Support for this assumption comes notably from evidence that temporal processing impairments are implicated in a range of neurological and psychiatric conditions (e.g. Buhusi & Meck, 2005). For instance, deficits in fast auditory temporal integration have been regularly put forward as resulting in phonologic discrimination impairments at the basis of speech comprehension deficits characterizing e.g. dyslexia (Habib, 2000). At least two aspects of the brain mechanisms of temporal order judgment remain unknown. First, it is unknown when during the course of stimulus processing a temporal ,,stamp‟ is established to guide TOJ perception. Second, the extent of interplay between the cerebral hemispheres in engendering accurate TOJ performance is unresolved Methods: We investigated the spatiotemporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. Results: AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional de-coupling between homotopic PSR areas. Conclusions: These results support a model of temporal order processing wherein behaviorally relevant temporal information - i.e. a temporal 'stamp'- is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auditory evoked potentials are informative of intact cortical functions of comatose patients. The integrity of auditory functions evaluated using mismatch negativity paradigms has been associated with their chances of survival. However, because auditory discrimination is assessed at various delays after coma onset, it is still unclear whether this impairment depends on the time of the recording. We hypothesized that impairment in auditory discrimination capabilities is indicative of coma progression, rather than of the comatose state itself and that rudimentary auditory discrimination remains intact during acute stages of coma. We studied 30 post-anoxic comatose patients resuscitated from cardiac arrest and five healthy, age-matched controls. Using a mismatch negativity paradigm, we performed two electroencephalography recordings with a standard 19-channel clinical montage: the first within 24 h after coma onset and under mild therapeutic hypothermia, and the second after 1 day and under normothermic conditions. We analysed electroencephalography responses based on a multivariate decoding algorithm that automatically quantifies neural discrimination at the single patient level. Results showed high average decoding accuracy in discriminating sounds both for control subjects and comatose patients. Importantly, accurate decoding was largely independent of patients' chance of survival. However, the progression of auditory discrimination between the first and second recordings was informative of a patient's chance of survival. A deterioration of auditory discrimination was observed in all non-survivors (equivalent to 100% positive predictive value for survivors). We show, for the first time, evidence of intact auditory processing even in comatose patients who do not survive and that progression of sound discrimination over time is informative of a patient's chance of survival. Tracking auditory discrimination in comatose patients could provide new insight to the chance of awakening in a quantitative and automatic fashion during early stages of coma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dorsal and ventral pathways for syntacto-semantic speech processing in the left hemisphere are represented in the dual-stream model of auditory processing. Here we report new findings for the right dorsal and ventral temporo-frontal pathway during processing of affectively intonated speech (i.e. affective prosody) in humans, together with several left hemispheric structural connections, partly resembling those for syntacto-semantic speech processing. We investigated white matter fiber connectivity between regions responding to affective prosody in several subregions of the bilateral superior temporal cortex (secondary and higher-level auditory cortex) and of the inferior frontal cortex (anterior and posterior inferior frontal gyrus). The fiber connectivity was investigated by using probabilistic diffusion tensor based tractography. The results underscore several so far underestimated auditory pathway connections, especially for the processing of affective prosody, such as a right ventral auditory pathway. The results also suggest the existence of a dual-stream processing in the right hemisphere, and a general predominance of the dorsal pathways in both hemispheres underlying the neural processing of affective prosody in an extended temporo-frontal network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence from neuropsychological and activation studies (Clarke et al., 2oo0, Maeder et al., 2000) suggests that sound recognitionand localisation are processed by two anatomically and functionally distinct cortical networks. We report here on a case of a patientthat had an interruption of auditory information and we show: i) the effects of this interruption on cortical auditory processing; ii)the effect of the workload on activation pattern.A 36 year old man suffered from a small left mesencephalic haemotrhage, due to cavernous angioma; the let% inferior colliculuswas resected in the surgical approach of the vascular malformation. In the acute stage, the patient complained of auditoryhallucinations and of auditory loss in right ear, while tonal audiometry was normal. At 12 months, auditory recognition, auditorylocalisation (assessed by lTD and IID cues) and auditory motion perception were normal (Clarke et al., 2000), while verbal dichoticlistening was deficient on the right side.Sound recognition and sound localisation activation patterns were investigated with fMRI, using a passive and an activeparadigm. In normal subjects, distinct cortical networks were involved in sound recognition and localisation, both in passive andactive paradigm (Maeder et al., 2OOOa, 2000b).Passive listening of environmental and spatial stimuli as compared to rest strongly activated right auditory cortex, but failed toactivate left primary auditory cortex. The specialised networks for sound recognition and localisation could not be visual&d onthe right and only minimally on the left convexity. A very different activation pattern was obtained in the active condition wherea motor response was required. Workload not only increased the activation of the right auditory cortex, but also allowed theactivation of the left primary auditory cortex. The specialised networks for sound recognition and localisation were almostcompletely present in both hemispheres.These results show that increasing the workload can i) help to recruit cortical region in the auditory deafferented hemisphere;and ii) lead to processing auditory information within specific cortical networks.References:Clarke et al. (2000). Neuropsychologia 38: 797-807.Mae.der et al. (2OOOa), Neuroimage 11: S52.Maeder et al. (2OOOb), Neuroimage 11: S33

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand.