985 resultados para Central Red Sea
Resumo:
Biogeochemical behavior of a group of heavy metals and metalloids in water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary (Obskaya Guba) - Kara Sea section on the basis of data obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September-October 2007. Changes in ratios of dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as growth of adsorbed fractions of the elements in near-bottom suspended matter under mixing of riverine and marine waters. Features of chemical element accumulation in typical benthic organisms of the Obskaya Guba and the Kara Sea were revealed, and their concentrating factors were calculated based on specific conditions of the environment. It was shown that shells of bivalves possessing higher biomass compared to other groups of organisms in the Obskaya Guba play an important role in deposition of heavy metals. In the Obskaya Guba mollusks accumulate Cd and Pb at the background level, whereas Cu and Zn contents appear to be higher than the background level.
Resumo:
Analysis of rare earth element (REE) distribution and behavior in ore-bearing hydrothermal-sedimentary deposits from the Red Sea is carried out. Geochemical patterns and mechanisms of REE accumulation in metalliferous sediments of the open ocean and in deposits adjoined to areas of hydrothermal discharge are shown. Main factors, which determine composition of REE and the level of their accumulation in hydrothermal occurrences of the Red Sea, are considered.
Resumo:
Results of studies of hydrothermal sulfide-sulfate rocks occurring in the Atlantis II Deep of the Red Sea are reported in the paper.
Resumo:
A morphometric analysis was performed for the late Middle Miocene bivalve species lineage of Polititapes tricuspis (Eichwald, 1829) (Veneridae: Tapetini). Specimens from various localities grouped into two stratigraphically successive biozones, i.e. the upper Ervilia Zone and the Sarmatimactra Zone, were investigated using a multi-method approach. A Generalized Procrustes Analysis was computed for fifteen landmarks, covering characteristics of the hinge, muscle scars, and pallial line. The shell outline was separately quantified by applying the Fast Fourier Transform, which redraws the outline by fitting in a combination of trigonometric curves. Shell size was calculated as centroid size from the landmark configuration. Shell thickness, as not covered by either analysis, was additionally measured at the centroid. The analyses showed significant phenotypic differentiation between specimens from the two biozones. The bivalves become distinctly larger and thicker over geological time and develop circular shells with stronger cardinal teeth and a deeper pallial sinus. Data on the paleoenvironmental changes in the late Middle Miocene Central Paratethys Sea suggest the phenotypic shifts to be functional adaptations. The typical habitats for Polititapes changed to extensive, very shallow shores exposed to high wave action and tidal activity. Caused by the growing need for higher mechanical stability, the bivalves produced larger and thicker shells with stronger cardinal teeth. The latter are additionally shifted towards the hinge center to compensate for the lacking lateral teeth and improve stability. The deepening pallial sinus is related to a deeper burrowing habit, which is considered to impede being washed out in the new high-energy settings.
Resumo:
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral delta18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly delta18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater delta18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater delta18O and salinity were observed. The two parameters were related to each other by the equation delta18O Seawater (per mil, VSMOW) = 0.281 * Salinity - 9.14. The high-resolution coral delta18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater delta18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral delta18O calibrations against the in situ measurements show that temperature (T) is related to coral delta18O (delta c) and seawater delta18O (delta w) by the equation T (°C) = -5.38 (delta c - delta w) -1.08. Our results demonstrate that coral delta18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater delta18O to this proxy, which could be ignored.
Resumo:
One of the major shipboard findings during Leg 23 drilling in the Red Sea was the presence of late Miocene evaporites at Sites 225, 227, and 228. The top of the evaporite sequence correlates with a strong reflector (Reflector S) which has been mapped over much of the Red Sea (Ross et al., 1969, Phillips and Ross, 1970). This indicates that the Red Sea appears to be extent. Miocene sediments, including evaporites, are known from a few outcrops along the coastal plains of the Gulf of Suez to lat 14°N (Sadek, 1959, cited in Friedman, 1972; Heybroek, 1965; Friedman, 1972). Along the length of the Red Sea, the presence of Miocene salt is indicated by seismic reflection studies (Lowell and Genik, 1972) and confirmed by drilling. The recently published data from deep exploratory wells (Ahmed, 1972) demonstrate the great thickness of elastics and evaporites which were deposited in the Red Sea depression during Miocene time. The Red Sea evaporites are of the same age as the evaporites found by deep sea drilling (DSDP Leg 13) in the Mediterranean Sea. Therefore, Reflector S in the Red Sea is comparable to Reflector M in the Mediterranean. It is assumed that during Miocene time a connection between these two basins was established (Coleman, this volume) resulting in a similar origin for the evaporites deposited in the Red Sea and in the Mediterranean Sea. The origin of the Mediterranean evaporites has been discussed in great detail (Hsü et al., 1973; Nesteroff, 1973; Friedman, 1973). The formation of evaporites may be interpreted by three different hypotheses. 1) Evaporation of a shallow restricted shelf sea or lagoon which receives inflows from the open ocean. 2) Evaporation of a deep-water basin which is separated from the open ocean by a shallow sill (Schmalz, 1969). 3) Evaporation of playas or salt lakes which are situated in desiccated deep basins isolated from the open ocean (Hsü et al., 1973). The purpose of this study is to show whether one of these models might apply to the formation and deposition of the Red Sea evaporites. Therefore, a detailed petrographic and geochemical investigation was carried out.
Resumo:
Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind**-1 h**-1 and 3.8 pellets ind**-1 h**-1 and was significantly higher with T. weissflogii than with the other food sources. Average pellet size varied between 2.2 x 10**5 µm**3 and 10.0 x 10**5 µm**3. Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 µm at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O2 µm**-3 d**-1, 2.86 fmol O2 µm**-3 d**-1, and 0.73 fmol O2 µm**-3 d**-1 in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d**-1 independent on diet (range: 0.08-0.21 d**-1). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +- 169 m d**-1) and E. huxleyi (200 +- 93 m d**-1) than on Rhodomonas sp. (35 +- 29 m d**-1). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly produced copepod fecal pellets but does not protect them from decomposition.
Resumo:
Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.