989 resultados para Cell Monitoring
Resumo:
OBJECTIVE: To investigate whether HIV-infected patients on a stable and fully suppressive combination antiretroviral therapy (cART) regimen could safely be monitored less often than the current recommendations of every 3 months. DESIGN: Two thousand two hundred and forty patients from the EuroSIDA study who maintained a stable and fully suppressed cART regimen for 1 year were included in the analysis. METHODS: Risk of treatment failure, defined by viral rebound, fall in CD4 cell count, development of new AIDS-defining illness, serious opportunistic infection or death, in the 12 months following a year of a stable and fully suppressed regimen was assessed. RESULTS: One hundred thirty-one (6%) patients experienced treatment failure in the 12 months following a year of stable therapy, viral rebound occurred in 99 (4.6%) patients. After 3, 6 and 12 months, patients had a 0.3% [95% confidence interval (CI) 0.1-0.5], 2.2% (95% CI 1.6-2.8) and 6.0% (95% CI 5.0-7.0) risk of treatment failure, respectively. Patients who spent more than 80% of their time on cART with fully suppressed viraemia prior to baseline had a 38% reduced risk of treatment failure, hazard ratio 0.62 (95% CI 0.42-0.90, P = 0.01). CONCLUSION: Patients who have responded well to cART and are on a well tolerated and durably fully suppressive cART regimen have a low chance of experiencing treatment failure in the next 3-6 months. Therefore, in this subgroup of otherwise healthy patients, it maybe reasonable to extend visit intervals to 6 months, with cost and time savings to both the treating clinics and the patients.
Resumo:
We sought to assess the feasibility and reproducibility of performing tissue-based immune characterization of the tumor microenvironment using CT-compatible needle biopsy material. Three independent biopsies were obtained intraoperatively from one metastatic epithelial ovarian cancer lesion of 7 consecutive patients undergoing surgical cytoreduction using a 16-gauge core biopsy needle. Core specimens were snap-frozen and subjected to immunohistochemistry (IHC) against human CD3, CD4, CD8, and FoxP3. A portion of the cores was used to isolate RNA for 1) real-time quantitative (q)PCR for CD3, CD4, CD8, FoxP3, IL-10 and TGF-beta, 2) multiplexed PCR-based T cell receptor (TCR) CDR3 Vβ region spectratyping, and 3) gene expression profiling. Pearson's correlations were examined for immunohistochemistry and PCR gene expression, as well as for gene expression array data obtained from different tumor biopsies. Needle biopsy yielded sufficient tissue for all assays in all patients. IHC was highly reproducible and informative. Significant correlations were seen between the frequency of CD3+, CD8+ and FoxP3+ T cells by IHC with CD3ε, CD8A, and FoxP3 gene expression, respectively, by qPCR (r=0.61, 0.86, and 0.89; all p< 0.05). CDR3 spectratyping was feasible and highly reproducible in each tumor, and indicated a restricted repertoire for specific TCR Vβ chains in tumor-infiltrating T cells. Microarray gene expression revealed strong correlation between different biopsies collected from the same tumor. Our results demonstrate a feasible and reproducible method of immune monitoring using CT-compatible needle biopsies from tumor tissue, thereby paving the way for sophisticated translational studies during tumor biological therapy.
Resumo:
Background: Pre-existing psychological factors can strongly influence coping with type 1 diabetes mellitus and interfere with self-monitoring. Psychiatric disorders seem to be positively associated with poor metabolic control. We present a case of extreme compulsive blood testing due to obsessive fear of hypoglycemia in an adolescent with type 1 diabetes mellitus. Case report: Type 1 diabetes mellitus (anti GAD-antibodies 2624 U/l, norm < 9.5) was diagnosed in a boy aged 14.3 years [170 cm (+ 0.93 SDS), weight 50.5 kg (+ 0.05 SDS)]. Laboratory work-up showed no evidence for other autoimmune disease. Family and past medical history were unremarkable. Growth and developmental milestones were normal. Insulin-analog based basal-bolus regime was initiated, associated to standard diabetic education. Routine psychological evaluation performed at the onset of diabetes revealed intermittent anxiety and obsessivecompulsive traits. Accordingly, a close psychiatric follow-up was initiated for the patient and his family. An adequate metabolic control (HbA1c drop from >14 to 8%) was achieved within 3 months, attributed to residual -cell function. In the following 6 months, HbA1c rose unexpectedly despite seemingly adequate adaptations of insulin doses. Obsessive fear of hypoglycemia leading to a severe compulsive behavior developed progressively with as many as 68 glycemia measurements per day (mean over 1 week). The patient reported that he could not bear leaving home with glycemia < 15 mmol/l, ending up with school eviction and severe intra-familial conflict. Despite intensive psychiatric outpatient support, HbA1c rose rapidly to >14% with glycemia-testing reaching peaks of 120 tests/day. The situation could only be discontinued through psychiatric hospitalization with intensive behavioral training. As a result, adequate metabolic balance was restored (HbA1c value: 7.1 %) with acceptable 10-15 daily glycemia measurements. Discussion: The association of overt psychiatric disorders to type 1 diabetes mellitus is very rare in the pediatric age group. It can lead to a pathological behavior with uncontrolled diabetes. Such exceptional situations require long-term admissions with specialized psychiatric care. Slow acceptation of a "less is better" principle in glycemia testing and amelioration of metabolic control are difficult to achieve.
Resumo:
BACKGROUND: Patients with BM rarely survive .6 months and are commonly excluded from clinical trials. We aimed at improving outcome by exploring 2 combined modality regimens with at the time novel agents for which single-agent activity had been shown. METHODS: NSCLC patients with multiple BM were randomized to WBRT (10 × 3 Gy) and either GFT 250 mg p.o. daily or TMZ 75 mg/m2 p.o. daily ×21/28 days, starting on Day 1 of RT and to be continued until PD. Primary endpoint was overall survival, a Simon's optimal 2-stage design was based on assumptions for the 3-month survival rate. Cognitive functioning and quality of life were also evaluated. RESULTS: Fifty-nine patients (36 M, 23 F; 9 after prior chemo) were included. Median age was 61 years (range 46-82), WHO PS was 0 in 18 patients, 1 in 31 patients, and 2 in 10 patients. All but 1 patients had extracranial disease; 33 of 43 (TMZ) and 15 of 16 (GFT) had adenocarcinoma histology. GFT arm was closed early after stage 1 analysis when the prespecified 3-mo survival rate threshold (66%) was not reached, causes of death were not GFT related. Main causes of death were PD in the CNS 24%, systemic 41%, both 8%, and toxicity 10% [intestinal perforation (2 patients), pneumonia (2), pulmonary emboli (1), pneumonitis NOS (1), seizure (1)]. We summarize here other patients' characteristics for the 2 trial arms: TMZ (n ¼ 43)/GFT (n ¼ 16); median treatment duration: 1.6 /1.8 mo; Grade 3-4 toxicity: lymphopenia 5 patients (12%)/0; fatigue 8 patients (19%)/2 patients (13%). Survival data for TMZ/GFT arms: 3-month survival rate: 58.1% (95% CI 42.1-73)/62.5% (95% CI 35- 85); median OS: 4.9 months (95% CI 2.5-5.6)/6.3 months (95% CI 2.2- 14.6); median PFS: 1.8 months (95% CI 1.5-1.8)/1.8 (95% CI 1.1-3.9); median time to neurol. progr.: 8.0 months (95% CI 2.2-X)/4.8 (95% CI 3.9-10.5). In a model to predict survival time including the variables' age, PS, number of BM, global QL, total MMSE score, and subjective cognitive function, none of the variables accounted for a significant improvement in survival time. CONCLUSIONS: The combinations of WBRT with GFT or TMZ were feasible. However, in this unselected patient population, survival remains poor and a high rate of complication was observed. Four patients died as a result of high-dose corticosteroids. Preliminary evaluation of cognitive function andQL failed to show significant improvement. Indications and patient selection for palliative treatment should be revisited and careful monitoring and supportive care is required. Research and progress for this frequent clinical situation is urgently needed. Trial partly supported by AstraZeneca (Switzerland), Essex Chemie (Switzerland) and Swiss Federal Government.
Resumo:
Relatively simple techniques are now available which allow the preparation of large quantities of highly reproducible aggregate cultures from fetal rat brain or liver cells, and to grow them in a chemically defined medium. Since these cultures exhibit extensive histotypic cellular reorganization and maturation, they offer unique possibilities for developmental studies. Therefore, the purpose of the present study was to investigate the usefulness of these cultures in developmental toxicology. Aggregating brain cell cultures were exposed at different developmental stages to model drugs (i.e., antimitotic, neurotoxic, and teratogenic agents) and assayed for their responsiveness by measuring a set of biochemical parameters (i.e., total protein and DNA content, cell type-specific enzyme activities) which permit a monitoring of cellular growth and maturation. It was found that each test compound elicited a distinct, dose-dependent response pattern, which may ultimately serve to screen and classify toxic drugs by using mechanistic criteria. In addition, it could be shown that aggregating liver cell cultures are capable of toxic drug activation, and that they can be used in co-culture with brain cell aggregates, providing a potential model for complementary toxicological and metabolic studies.
Resumo:
Bacterial bioreporters have substantial potential for contaminant assessment but their real world application is currently impaired by a lack of sensitivity. Here, we exploit the bioconcentration of chemicals in the urine of animals to facilitate pollutant detection. The shore crab Carcinus maenas was exposed to the organic contaminant 2-hydroxybiphenyl, and urine was screened using an Escherichia coli-based luciferase gene (luxAB) reporter assay specific to this compound. Bioassay measurements differentiated between the original contaminant and its metabolites, quantifying bioconcentration factors of up to one hundred-fold in crab urine. Our results reveal the substantial potential of using bacterial bioreporter assays in real-time monitoring of biological matricesto determine exposure histories, with wide ranging potential for the in situ measurement of xenobiotics in risk assessments and epidemiology.
Resumo:
Introduction: Recent data have suggested that a population of CD4+ CD25high T cells, phenotypically characterized by the expression of CD45RO and CD127, is significantly expanded in stable liver and kidney transplant recipients and represents alloreactive T cells. We analyzed this putative new alloreactive cellular marker in various groups of kidney transplant recipients. Patients & methods: Flow cytometry was used to analyze the expression of CD25, CD45RO and CD127 on peripheral CD4+ T cells. Of 73 kidney transplant recipients, 59 had a stable graft function under standard immunosuppressive therapy (IS), 5 had biopsy-proven chronic humoral rejection (CHR), 8 were stable under minimal IS and one was an operationally "tolerant" patient who had discontinued IS for more than 3 years. Sixty-six healthy subjects (HS) were studied as controls. Results: Overall, the alloreactive T cell population was found to be significantly increased in the 73 kidney recipients (mean ± SE: 15.03 ± 1.04% of CD4+ CD25high T cells) compared to HS (5.93 ± 0.39%) (p<0.001). In the 5 patients with CHR, this population was highly expanded (31.33 ± 4.16%), whereas it was comparable to HS in the 8 stable recipients receiving minimal IS (6.12 ± 0.86%), in 4 patients who had been switched to sirolimus (4.21 ± 0.53%) as well as in the unique "tolerant" recipient (4.69%). Intermediate levels (15.84 ± 0.93%) were found in the 55 recipients with stable graft function on standard CNI-based IS. Regulatory T cells, defined as CD4+CD25high FoxP3+ CD127low, were found to be significantly reduced in all recipients except in those with minimal or no IS, and this reduction was particularly striking in recipients with CHR. Conclusion: After kidney transplantation, an alloreactive T cell population was found to be significantly expanded and it correlates with the clinical status of the recipients. Interestingly, in stable patients with minimal (or no) IS as well as in patients on sirolimus, alloreactive T cells were comparable the healthy controls. Measuring circulating CD4+CD25high CD45RO+ CD127high T cells may become a useful monitoring tool after transplantation.
Resumo:
Large numbers and functionally competent T cells are required to protect from diseases for which antibody-based vaccines have consistently failed (1), which is the case for many chronic viral infections and solid tumors. Therefore, therapeutic vaccines aim at the induction of strong antigen-specific T-cell responses. Novel adjuvants have considerably improved the capacity of synthetic vaccines to activate T cells, but more research is necessary to identify optimal compositions of potent vaccine formulations. Consequently, there is a great need to develop accurate methods for the efficient identification of antigen-specific T cells and the assessment of their functional characteristics directly ex vivo. In this regard, hundreds of clinical vaccination trials have been implemented during the last 15 years, and monitoring techniques become more and more standardized.
Resumo:
The laboratory tests currently available to the clinician for day-to-day management of HIV infection are generally limited to the measurement of the viral load and of the CD4 cell count. More recently, analysis of drug resistance and of plasma drug levels have been added to the monitoring armamentarium. There are, however, numerous other techniques currently available to researchers that may in the future be incorporated into clinical routine. These include the analysis of human and viral genetic determinants of disease evolution, detailed analyses of immune recovery and reserve, pharmacogenetic determinants of treatment response, and toxicity. These approaches may in the future provide highly individualized disease management.
Resumo:
Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells.
Resumo:
An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them.
Resumo:
Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.
Resumo:
Bioprocess technology is a multidisciplinary industry that combines knowledge of biology and chemistry with process engineering. It is a growing industry because its applications have an important role in the food, pharmaceutical, diagnostics and chemical industries. In addition, the current pressure to decrease our dependence on fossil fuels motivates new, innovative research in the replacement of petrochemical products. Bioprocesses are processes that utilize cells and/or their components in the production of desired products. Bioprocesses are already used to produce fuels and chemicals, especially ethanol and building-block chemicals such as carboxylic acids. In order to enable more efficient, sustainable and economically feasible bioprocesses, the raw materials must be cheap and the bioprocesses must be operated at optimal conditions. It is essential to measure different parameters that provide information about the process conditions and the main critical process parameters including cell density, substrate concentrations and products. In addition to offline analysis methods, online monitoring tools are becoming increasingly important in the optimization of bioprocesses. Capillary electrophoresis (CE) is a versatile analysis technique with no limitations concerning polar solvents, analytes or samples. Its resolution and efficiency are high in optimized methods creating a great potential for rapid detection and quantification. This work demonstrates the potential and possibilities of CE as a versatile bioprocess monitoring tool. As a part of this study a commercial CE device was modified for use as an online analysis tool for automated monitoring. The work describes three offline CE analysis methods for the determination of carboxylic, phenolic and amino acids that are present in bioprocesses, and an online CE analysis method for the monitoring of carboxylic acid production during bioprocesses. The detection methods were indirect and direct UV, and laser-induced frescence. The results of this work can be used for the optimization of bioprocess conditions, for the development of more robust and tolerant microorganisms, and to study the dynamics of bioprocesses.
Resumo:
The three alpha2-adrenoceptor (alpha2-AR) subtypes belong to the G protein-coupled receptor superfamily and represent potential drug targets. These receptors have many vital physiological functions, but their actions are complex and often oppose each other. Current research is therefore driven towards discovering drugs that selectively interact with a specific subtype. Cell model systems can be used to evaluate a chemical compound's activity in complex biological systems. The aim of this thesis was to optimize and validate cell-based model systems and assays to investigate alpha2-ARs as drug targets. The use of immortalized cell lines as model systems is firmly established but poses several problems, since the protein of interest is expressed in a foreign environment, and thus essential components of receptor regulation or signaling cascades might be missing. Careful cell model validation is thus required; this was exemplified by three different approaches. In cells heterologously expressing alpha2A-ARs, it was noted that the transfection technique affected the test outcome; false negative adenylyl cyclase test results were produced unless a cell population expressing receptors in a homogenous fashion was used. Recombinant alpha2C-ARs in non-neuronal cells were retained inside the cells, and not expressed in the cell membrane, complicating investigation of this receptor subtype. Receptor expression enhancing proteins (REEPs) were found to be neuronalspecific adapter proteins that regulate the processing of the alpha2C-AR, resulting in an increased level of total receptor expression. Current trends call for the use of primary cells endogenously expressing the receptor of interest; therefore, primary human vascular smooth muscle cells (SMC) expressing alpha2-ARs were tested in a functional assay monitoring contractility with a myosin light chain phosphorylation assay. However, these cells were not compatible with this assay due to the loss of differentiation. A rat aortic SMC cell line transfected to express the human alpha2B-AR was adapted for the assay, and it was found that the alpha2-AR agonist, dexmedetomidine, evoked myosin light chain phosphorylation in this model.
Resumo:
The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H³]-arginine to L-[H³]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system.