948 resultados para Cationic vesicle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six new vesicle-forming, cationic surfactant lipids are synthesized. Four of them contain 'flat' aromatic units at different locations of hydrophobic segments. In order to estimate the influence of aromatic units in the lipid monomer two other surfactant lipids of related structure with n-butyloxy units in the places of aromatic groups were also prepared. Transmission electron microscopy confirmed the vesicular membrane formation from these newly synthesized lipids. DSC or temperature-dependent keto-enol tautomerism of benzoylacetanilide-doped vesicles reveal a remarkable increase in the thermal stability of the membranes formed from aromatic surfactant lipids in contradistinction to their counterparts that contain n-butyloxy units. The enhanced thermal stability originates presumably as a consequence of inter-monomer stacking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to elucidate the role of the linkage region that connects polar headgroups with hydrophobic segments in a lipid monomer, cationic mixed-chain amphiphiles containing acyl and alkyl hydrophobic segments connected at the level of Me(2)N(+) headgroups 2a-d were synthesized. Related dialkyldimethyl-ammonium ion surfactants 1a-e and diacyl systems 3a-c were also synthesized. Despite mismatch in the connector region, amphiphiles 2a-d form bilayer vesicles like their dialkyl and diacyl counterparts, as revealed by electron microscopy. Introduction of an ester connector function between the polar and hydrophobic parts raises the phase transition temperature (T-m), transition enthalpies, and resistance to ion permeation. Consideration of energy minimized conformations points toward the importance of differences in the depth of chain penetration into the putative bilayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four cationic acridine derivatives have been synthesized. The positively charged amine residue in one of these is connected directly on to the acridine nucleus and in three other acridines, the amines are connected via a 9-CH2 unit to acridine. We have investigated the binding of these acridines with mammalian DNA by absorption titration, UV- and induced-CD spectroscopy and competitive ethidium bromide displacement fluorescence assay. The effects on the DNA duplex denaturation melting temperatures upon binding of each one of these are also examined. The results obtained herein clearly show that the introduction of a -CH2 group in the im mediate vicinity of the interrelation moiety introduces alterations in the DNA binding characteristics of the resulting acridines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight new vesicle-forming dimeric surfactants are synthesized: the polar headgroup separation in such dimeric amphiphiles strongly influences their vesicular thermotropic phase-transition behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four types of cationic collectors were tested and evaluated for their performance in the reverse flotation of silica from the spiral preconcentrate of Kudremukh iron ore. A stagewise flotation was conducted by adding the reagent in three stages. Starch was used to depress hematite. Silica flotation was found to be very sensitive to the amount of cationic reagent added. The performance of the reagents was evaluated based on the percentage of silica and iron in the concentrate and percent recovery of iron obtained in the concentrate. Tests of significance, namely, t-test and F-test were performed to select the best two reagents for further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of small-angle neutron scattering (SANS) cross sections from different mixed micelles composed of CTAB and Br-, n-C16H33N+Me2-(CH2)(m)N+Me2-n-C16H33, Br- (16-m-16, 2Br(-), where m = 3, 5, and 10), in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macroion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the micelles. The aggregate composition matches with that predicted from an ideal mixing model. The SANS analysis further indicates that the extent of aggregate growth and the Variations of shapes of the mixed micelles could be modulated by the amount of dimeric surfactant present in these mixtures. With the spacer chain length m less than or equal to 4 in the dimeric surfactant, the propensity of micellar growth is particularly pronounced. The effect of the variation of the temperature for the mixed micellar system (23.1 mol % of 16-3-16, 2Br(-)) was also examined. The systemic microviscosities that the mixed micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were determined. The variation of the microviscosities of the mixed micelles as a function of percentages of the dimeric surfactants could be explained in terms of conformational variations and progressive looping of the spacer chain of dimeric surfactants in mixed micellar aggregates with increasing m values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight new dimeric lipids, in which the two Me2N+ ion headgroups are separated by a variable number of polymethylene units [-(CH2)(m)-], have been synthesized. The electron micrograph (TEM) and dynamic light scattering (DLS) of their aqueous dispersions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the m value, the method, and thermal history of the vesicle preparation. Information on the thermotropic properties of the resulting vesicles was obtained from microcalorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, the T-m values for these vesicles revealed a nonlinear dependence on spacer chain length (m value). These vesicles were able to entrap riboflavin. The rates of permeation of the OH- ion under an imposed transmembrane pH gradient were also found to depend significantly on the m value. X-Ray diffraction of the cast films of the lipid dispersions elucidated the nature and the thickness of these membrane organizations, and it was revealed that these lipids organize in three different ways depending on the m value. The EPR spin-probe method with the doxylstearic acids 5NS, 12NS, and 16NS, spin-labeled at various positions of stearic acid, was used to establish, the chain-flexibility gradient and homogeneity of these bilayer assemblies. The apparent fusogenic propensities of these bipolar tetraether lipids were investigated in the presence of Na2SO4 with fluorescence-resonance energy-transfer fusion assay. Small unilamellar vesicles formed from 1 and three representative biscationic lipids were also studied with fluorescence anisotropy and H-1 NMR spectroscopic techniques in the absence and the presence of varying amounts of cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structural analysis of alkyl chain conformation of an intercalated cationic lipid bilayer is described. Dialkyl dimethylammonium ions (di-C(n)DA) were ion exchanged into the galleries of layered cadmium thiophosphate to give Cd0.83PS3(di-C(n)DA)(0.34). The grafting density and interlayer expansions were identical to those for the intercalated single chain alkyl trimethylammonium (C(n)TA) bilayers. The increased methylene chain density in the galleries, however, forces the intercalated lipid to adopt a more trans ordered structure. Progression bands arising from the coupling of vibrational modes of trans methylene units are used to establish the extent of trans registry. Two types of ordered structures of the intercalated cationic lipid may be distinguished. One in which both alkyl chains adopt an all-trans geometry, and one in which the methylene bond adjacent to the headgroup on one of the alkyl chains is gauche. The latter structure is typically found in the crystalline state of these cationic lipids. The concentrations of the two structures were determined from the ratio of the intensities of the progression bands and were found to remain unchanged with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eosinophil Cationic Protein (ECP) is a member of RNase A superfamily which carries out the obligatory catalytic role of cleaving RNA. It is involved in a variety of biological functions. Molecular dynamics simulations followed by essential dynamics analysis on this protein are carried out with the goal of gaining insights into the dynamical properties at atomic level. The top essential modes contribute to subspaces and to the transition phase. Further, the sidechain-sidechain/sidechain-mainchain hydrogen bond clusters are analyzed in the top modes, and compared with those of crystal structure. The role of residues identified by these methods is discussed in the context of concerted motion, structure and stability of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel cationic and neutral analogues of bile acids (1-6) were synthesized and their aggregation properties studied. Cations 1 and 2 formed thermoreversible gels in aqueous salt solutions, whereas neutral 4 formed gels in water in the presence of organic solvents such as ethanol, methanol, DMSO, and DMF. The gels derived from 1 and 4 have been investigated by SEM and with pyrene as a fluorescent probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 < < 0.25) was obtained by reoxidation of magnetite. The micropores are retained during the topotactic transformation to magnetite and finally to maghemite, whereas cylindrical mesopores are formed due to rearrangement of the oxygen sublattice from hexagonal to cubic close packing during the conversion of hydrogoethite to magnetite and then to maghemite. Accordingly, three different types of maghemite particles are realized: strongly oriented multicrystalline particles, single crystalline acicular particles with micropores or crystallites having mesopores. Higher values of saturation magnetization ((s) = 74 emu g(-1)) and coercivity (H-c = 320 Oe) are obtained for single crystalline mesoporous particles. In the other cases, the smaller size of particles and larger distribution of micropores decreases sigma (s) considerably ( < 60 emu g(-1)) due to relaxation effects of spins on the surface atoms as revealed by Mossbauer spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel gold nanoparticles bearing cationic single-chain, double-chain, and cholesterol based amphiphilic units have been synthesized. These nanoparticles represent size-stable entities in which various cationic lipids have been immobilized through their thiol group onto the gold nanoparticle core. The resulting colloids have been characterized by UV-vis, (1)H NMR, FT-IR spectroscopy, and transmission electron microscopy. The average size of the resultant nanoparticles could be controlled by the relative bulkiness of the capping agent. Thus, the average diameters of the nanoparticles formed from the cationic single-chain, double-chain, and cholesterol based thiolate-coated materials were 5.9,2.9, and 2.04 nm, respectively. We also examined the interaction of these cationic gold nanoparticles with vesicular membranes generated from dipalmitoylphosphatidylcholine (DPPC) lipid suspensions. Nanoparticle doped DPPC vesicular suspensions displayed a characteristic surface plasmon band in their UV-vis spectra. Inclusion of nanoparticles in vesicular suspensions led to increases in the aggregate diameters, as evidenced from dynamic light scattering. Differential scanning calorimetric examination indicated that incorporation of single-chain, double-chain, and cholesteryl-linked cationic nanoparticles exert variable effects on the DPPC melting transitions. While increased doping of single-chain nanoparticles in DPPC resulted in the phases that melt at higher temperatures, inclusion of an incremental amount of double-chain nanoparticles caused the lowering of the melting temperature of DPPC. On the other hand, the cationic cholesteryl nanoparticle interacted with DPPC in membranes in a manner somewhat analogous to that of cholesterol itself and caused broadening of the DPPC melting transition.